Plants potential to be developed for wound healing medicine in Indonesia

Mohammad Kanedi *, Kusuma Handayani and Wawan Abdullah Setiawan

Department of Biology, Faculty of Math and Sciences, University of Lampung, Bandar Lampung, Indonesia.

International Journal of Frontiers in Life Science Research, 2022, 03(01), 039–044

Publication history: Received on 12 August 2022; revised on 17 September 2022; accepted on 19 September 2022

Article DOI: https://doi.org/10.53294/ijflsr.2022.3.1.0062

Abstract

Wound healing is a complex process of tissue repair consists of four stages: hemostasis, inflammation, proliferation, and remodeling. These stages are influenced by different chemicals so that the use of natural products containing many lead compounds is important to be considered. In the plant-derived natural products there is a variety of useful chemicals for wound healing process such as: antioxidants, antimicrobials, anti-inflammatory agents, and enhancers for re-epithelialization and collagen formation. That's the reason why research on the discovery of new wound drugs from natural products, including in Indonesia, keeps increasing. This review paper presents the results of research on the potential of plants in Indonesia that can be developed into wound healing drugs that have been published in the last 10 years.

Keywords: Plant-derived medicine; Wound healing drugs; Indonesian plants; Anti-wound ingredient; Phyto medicine

1. Introduction

Due to failure of modern drug discovery methods to deliver various lead compounds for curing disease, recently many big pharmaceutical companies have renewed their interest in natural product, instead of favor synthetic compounds [1-2]. The global drug market is worth 1.1 trillion dollars and 35% of the medicines originated from natural products [3]. Natural products, with today’s technological advances, can be screened and processed in discovering new drugs [4]. In the context of wound treatment, both cuts and burns, the search for natural product-based medicines is very relevant considering that wound healing is a complex process of tissue repair [5]. Cutaneous wound healing is consisted of 4 stages: hemostasis, inflammation, proliferation, and remodeling [6]. Hemostasis is mechanism of bleeding cessation from blood vessel characterized by vascular constriction, platelet aggregation, degranulation, and fibrin plug formation. Inflammation is a wound healing stage characterized by neutrophil infiltration, monocyte infiltration and differentiation to macrophage, lymphocyte infiltration. Proliferation is a stage in which the wound is rebuilt with new tissue made up of collagen and extracellular matrix characterized by re-epithelialization, angiogenesis, collagen synthesis, and ECM formation. Remodeling is a phase when collagen is remodeled, vascular maturation, and the wound fully closes [7].

The advantage of natural products, medicinal plant-derived ingredients, for instance, is that they contain a variety of useful chemicals for wound healing process such as: antioxidants, antimicrobials, anti-inflammatory agents, and enhancers for re-epithelialization and collagen formation [8].

The study reported by Sharma et al. (2018) prove this assumption, that polymolecular traditional medicine has more therapeutic benefits than a single molecule based allopathic medicine in wound care because they are not only anti-inflammatory and anti-microbial in nature but also affect tissue regeneration and rejuvenation. The wealth of active

*Corresponding author: Mohammad Kanedi
Department of Biology, Faculty of Math and Sciences, University of Lampung, Bandar Lampung, Indonesia.
Copyright © 2022 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.
Ingredients in these natural products allow the wound healing process to be faster because inflammation, epithelization, vascular maturation, and wound closure can be shortened [9].

In addition to these scientific-technical reasons, the rise of research on the discovery of new wound drugs from natural products, including in Indonesia, is the phyto-medicines cost relatively economical and inexpensive [10]. This paper presents the results of research on plants in Indonesia that have the potential to be developed into wound healing drugs carried out by researchers in this country in the last 10 years.

2. Data collection

The research results collected in this paper are those that have been published in scientific journals, both domestically and internationally, which can be searched through the Google search engine. The criteria for the works to be collected are publications between 2012-2022, both in reputable journals or ordinary ones. In addition, most importantly, the plants used as test materials are plants that grow in Indonesia. Here is (Table 1) the list of plant species that shown efficacies in wound healing revealed by Indonesian researchers.

Table 1 Plant species that have been tested for their effect on wound healing in Indonesia

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Type of extract</th>
<th>Test animal</th>
<th>Type of wound</th>
<th>Healing parameter</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anredera cordifolia (Ten.) Steenis</td>
<td>ethanolic leaf-extract in vaselin base ointment</td>
<td>rats (Rattus norvegicus)</td>
<td>skin burns from iron hot plate</td>
<td>histological (PMN infiltration, collagen deposition, fibrosis, and angiogenesis)</td>
<td>[11]</td>
</tr>
<tr>
<td></td>
<td>water leaves extract paste</td>
<td>Mice (Mus musculus L.)</td>
<td>incision wounds</td>
<td>percentage of wound contraction</td>
<td>[12]</td>
</tr>
<tr>
<td></td>
<td>ethanolic leaf-extract ointment</td>
<td>Guinea pigs</td>
<td>excision wounds</td>
<td>percentage of wound closure</td>
<td>[13]</td>
</tr>
<tr>
<td></td>
<td>ethanolic leaves extract ointment</td>
<td>hyperglycemic male and female rabbits</td>
<td>excision wounds</td>
<td>wound closure and proliferation of fibroblast cell</td>
<td>[14]</td>
</tr>
<tr>
<td></td>
<td>leaves extract combined with MEBO</td>
<td>Human: a woman patient</td>
<td>burns wound from hot cooking oil</td>
<td>rate of epithelialization and infection</td>
<td>[15]</td>
</tr>
<tr>
<td>Ageratum conyzoides L. combined with Centell asiatica</td>
<td>Ethanolic leaves extract</td>
<td>albino mice (Mus musculus)</td>
<td>incision wounds</td>
<td>percentage of wound closures</td>
<td>[16]</td>
</tr>
<tr>
<td>Allium sativum L.</td>
<td>water and ethanol extract ointment</td>
<td>Mus musculus L.</td>
<td>burns wound from hot metal plate</td>
<td>rate of healing phases, percentage of wound closures</td>
<td>[17]</td>
</tr>
<tr>
<td>Aloe vera combined with Melastoma polyanthum</td>
<td>gel containing ethanol extract</td>
<td>male white rats (Rattus norvegicus)</td>
<td>burns wound from hot iron plate</td>
<td>diameter of wound closures</td>
<td>[18]</td>
</tr>
<tr>
<td>Cassia alata L.</td>
<td>methanolic leaves-extract ointment</td>
<td>male rabbits</td>
<td>excision wounds</td>
<td>scores of wound closures</td>
<td>[19]</td>
</tr>
<tr>
<td>Plant Name</td>
<td>Extract Type</td>
<td>Animal</td>
<td>Study Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------------------------</td>
<td>--------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centella asiatica</td>
<td>ethanolic leaves extract ointment</td>
<td>hyperglicemic male and female rabbits</td>
<td>excision wounds and proliferation of fibroblast cell [20]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colocasia esculenta L.</td>
<td>ethanolic leaf stalk extract ointment</td>
<td>Mus musculus L</td>
<td>burns wound from hot iron plate diameter of wound closures [15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cocos nucifera (coconut)</td>
<td>virgin coconut oil (VCO)</td>
<td>rabbits</td>
<td>burns wound from hot metal plate epithelialization and neovascularization [21]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromolaena odorata L.</td>
<td>ethanolic leaves extract ointment</td>
<td>wistar rats (Rattus norvegicus)</td>
<td>burns wound from hot metal plate percentage of wound closures [22]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphorbia tirucalli</td>
<td>ointment containing ethanol extract</td>
<td>Wistar rats (Rattus norvegicus)</td>
<td>burns wound from hot iron plate rates of inflammation, proliferation, and remodeling phases [23]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ficus deltoidea</td>
<td>paste containing methanolic leaf extract</td>
<td>male mice (Mus musculus)</td>
<td>incision wounds percent wound closures and content of DNA and hydroxyproline [24]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impatiens balsamina</td>
<td>ethanolic leaves extract ointment</td>
<td>wistar rats (Rattus norvegicus)</td>
<td>excision wounds inflammatory cells count and collagen formation [25]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cajuputi</td>
<td>gel containing methanolic flower extract</td>
<td>wistar rats (Rattus norvegicus)</td>
<td>excision wounds wound closures [26]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musa acuminate (banana)</td>
<td>ethanolic leaf sheath extracts</td>
<td>male rabbits</td>
<td>burns wound from hot metal plate wounds diameter and closures [27]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poikilospermum suaveolensi</td>
<td>ethanol and ethylacetate leaves-extract</td>
<td>albino wistar rats</td>
<td>excision wounds percentage of wound closures [28]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piper nigrum L. combined with Coffea canephora**</td>
<td>ethanol and ethylacetate leaves-extract</td>
<td>albino wistar rats</td>
<td>excision wounds percentage of wound closures [29]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantago major</td>
<td>Gel containing ethanol leaf extract</td>
<td>hyperglycemic wistar rats</td>
<td>Excision wounds nitric oxide production and fibroblast cells proliferation [30]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saurauia vulcani, Korth.</td>
<td>water infusion extract ointment</td>
<td>hyperglycemia rats</td>
<td>excision wounds percentage of wound closures [31]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Common approaches in wound medicine efficacy test

Inferring idea of Najmi et al (2019) regarding approaches in the discovery and development of plant-based natural products, the approach applied by Indonesian researchers in finding and testing plant-based wound medicines is mostly traditional and conventional. Plant selection is based on the observation, the empirical experiences related to the use of the plants, description and experimental analysis of traditionally used plant materials [33]. The preparations used are mostly still crude extracts which are presented in the form of a paste, gel, or liquid that is rubbed on the wound. The organisms used in the assays are generally mammals, rarely in humans. Types of wounds treated are incision, excision, and burns. The wound healing parameters measured are mostly anatomical parameters. Several used histological, cellular and sub-cellular parameters.

4. Conclusion

In summarize, there are at least 20 species of plant grown in Indonesia that are revealed to have potency as wound healing. These plants are: *Anredera cordifolia*, *Ageratum conyzoides*, *Allium sativum*, *Aloe vera*, *Cassia alata*, *Coffea canephora*, *Cocosnucifera*, *Colocasia esculenta*, *Euphorbia tirucalli*, *Ficus deltoidea*, *Impatiens balsamina*, *Melaleuca cauputii*, *Melastomapolyanthum*, *Musa acuminata*, *Poikilospermum suaveolens*, *Piper nigrum*, *Plantago major*, *Saurauia vulcani*, and *Stigma maydis*.

However, the data presented in this article only summarizes some of the research results that have been officially published in scientific journals that can be accessed via the internet. If all research results in various universities, both by lecturers and students are considered, the trend of research on natural medicines in Indonesia is very high. Therefore, in the future, research on the search and development of natural wound medicines needs to be accompanied by strict quality, safety, efficacy and standardization tests.

Compliance with ethical standards

Acknowledgments

I would like to acknowledge my colleague, Mr. Ali Bakri, at Department of Biology, Faculty Of Mathematics and Sciences, University of Lampung for his supports.

Disclosure of conflict of interest

Author declared there is no competing interest.

References

Yuniarti WM, Lukiswanto BS. Effects of herbal ointment containing the leaf extracts of Madeira vine (Anrederacordifolia (Ten.) Steenis) for burn wound healing process on albino rats, Veterinary World, 2017, 10(7): 808-813.

Imelda, Lister INE, Fachrial E, Ginting CN, Lie S. An experiment of Virgin Coconut Oil Treatments for Burn Incidence on Rabbits.2020 3rd International Conference on Mechanical, Electronics, Computer, and Industrial Technology (MECnIT): 386-389

