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Abstract 

Artificial lift (AL) methods are crucial for optimizing well performance and sustaining hydrocarbon production in oil 
and gas operations. Traditional AL selection relies on conventional methodologies and human expertise, which may be 
inadequate for handling complex reservoir dynamics and varying operating conditions. As the industry seeks more 
efficient, data-driven solutions, machine learning (ML) presents an opportunity to enhance AL selection. This study 
develops an ML-based stack framework of Random Forest (RF), Extreme Gradient Boosting (XGB) and Decision Tree 
(DT) to predict optimal AL methods. The models are trained and validated on a comprehensive dataset incorporating 
well particulars, production parameters, reservoir properties, and operational conditions. Performance evaluation 
demonstrates that the ML models achieve up to 95% accuracy in AL selection, significantly improving on traditional 
methods. The findings highlight the potential of ML-driven AL selection to enhance production efficiency, reduce 
operational costs, and optimize field performance. This study provides a foundation for integrating AI-based decision-
making into artificial lift optimization, offering a more adaptive and precise approach to production engineering. 
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1. Introduction

A key factor in maximizing well performance is the use of artificial lift (AL) techniques. These techniques are necessary 
to ensure a continuous extraction of hydrocarbons by overcoming the natural reduction in reservoir energy. Since AL is 
responsible for 95% of global oil production, it represents a significant milestone in the oil and gas sector. Sucker rod 
pumping (SRP), also known as beam pumping units (BPU), progressive cavity pumps (PCP), gas lift (GL), electrical 
submersible pumps (ESP), plunger lift (PL), hydraulic jet pumps (HJP), and hydraulic piston pumps (HPP) are among 
the various types of AL. About 70% of oil produced globally is produced using SRP, which is said to be the oldest lifting 
technique [1]. These artificial lifting techniques differ in their lifting capacities and conditions of use. For instance, 
sucker rod pumps used in low production wells have poor efficiency, electric submersible pumps are unsuitable for 
small displacement lifting, and surface-driven progressive cavity pumps in deviation wells have significant eccentric 
wear that shortens the pump inspection cycle [2]. Due to its successful operational history, gas lift (GL) is regarded as 
one of the most significant AL techniques globally [3]. 

In a situation where commodity prices are low, finding a means to reduce costs while increasing production is essential 
to the sustainability of ageing oil and gas fields. Frequently, a single well requires multiple artificial lift technologies to 
better recover gas and continually produce the hydrocarbon liquids [4]. Artificial lift selection techniques currently in 
use frequently depend on traditional approaches directed by human experience using qualitative methods. The fact that 
the field characteristics vary and rely on production years is a crucial concern. Furthermore, there is no theoretical or 
numerical correlation between the parameters, which results in inconsistent parameter selection and a laborious 
analytical process. As a result, additional costs arise from replacing AL in a short amount of time for manufacturing [1]. 
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Machine learning (ML) serves as a valuable tool for enhancing human understanding of complex challenges and, in this 
context, offers a data-driven approach to artificial lift selection [5]. Within the oil and gas industry, ML has been widely 
applied in various do-mains, including data analysis [6], predictive modelling [7], and performance evaluation [8]. 
Choubey and Karmakar (2021) [9] examined the role that AI and ML approaches play in the oil and gas industry. 
Through an efficient selection of ML and AI methodologies, they offered a technical strategy that makes it possible to 
collect in-formation from large data in the sector. In addition to clustering, regression, and optimization, De Carvalho 
and Freitas (2009) [10] included classification issues as ML tasks. In ML and data mining domains, flat classification 
issues are split into two-class (binary) or multi-class problems. Both issues solely predict the classes at the structured 
leaf nodes and are single-label classification problems [11]. 

This study aims to innovate artificial lift selection techniques in oil and gas production by employing a robust machine 
learning framework. This framework, comprising diverse machine learning models, aims to redefine selection practices 
with a dynamic and adaptive solution, enhancing accuracy significantly. 

2. Material and methods 

2.1. Data Collection 

The dataset utilized in this study comprises production data obtained from over 800 oil wells located within the Niger 
Delta Field. The wells selected for analysis are characterized by the implementation of artificial lift mechanisms to 
optimize hydrocarbon production. The dataset spans a time period from 2007 to 2021, providing a comprehensive 
representation of production dynamics over 14 years. The artificial lift methods employed include Gas Lift (GL), Sucker 
Rod Pump (SRP), Electrical Submersible Pump (ESP), Progressive Cavity Pump (PCP), Metal-to-Metal Progressive Cavity 
Pump (MTM PCP), and Hydraulic Lift (H_Lift). While Gas Lift and SRP are widely used in the region, MTM PCP and H_Lift 
have been applied in select cases, particularly in wells with high-viscosity crude or sand production challenges, which 
were a major concern in these particular wells. Some operators have explored these technologies through pilot 
programs and targeted deployments in complex reservoir conditions. The dataset was sourced from operational reports 
and field studies where these lift types were tested or implemented. The data contains features comprising oil 
production, gas production, water cut, GOR, sand production, amongst others. The distribution of these features is 
shown in Figure 1 below. 

 

Figure 1 Distribution plot of the features in the dataset 
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2.2. Well Selection Criteria 

The selection of wells for inclusion in the dataset was based on specific criteria to ensure the representation of various 
reservoir and operational conditions. Wells were chosen based on their artificial lift status, with preference given to 
those employing techniques such as Gas Lift, Electric Submersible Pump (ESP), Progressive Cavity Pump (PCP), and 
others commonly utilized in the Niger Delta. Additionally, considerations were made regarding well productivity, 
reservoir characteristics, and historical performance data to ensure the diversity and relevance of the dataset. 

2.3. Data Pre-processing 

Data pre-processing is a crucial and effort-intensive phase required to extract meaningful insights from raw data [12]. 
It involves applying various transformations to refine the dataset before feeding it into the machine learning algorithm. 
These transformations address issues such as missing values, outliers, and biased data [13]. To ensure consistency, 
accuracy, and relevance, the raw production data underwent extensive pre-processing. This included data cleaning 
techniques to detect and correct inconsistencies, remove outliers, and handle missing values. Since missing values 
accounted for less than 5% of the dataset and were randomly distributed, they were removed rather than imputed. 

Normalization was deemed unnecessary, as tree-based models are inherently robust to differences in feature scales. 
However, the dataset exhibited class imbalance, as shown in Figure 2, which could introduce an accuracy paradox if not 
addressed [14]. In this study, the data was deliberately left imbalanced to accurately represent field conditions and 
assess the model’s ability to generalize artificial lift selection [1]. Feature selection was also performed to minimize 
computational costs and prevent overfitting, as excessive features can negatively impact model performance [15]. Based 
on the available dataset, eight key features were identified for modelling: wellhead pressure, total fluid production, daily 
oil, gas, and water production, water cut, gas-oil ratio, and daily sand production. The Pearson correlation heatmap 
(Figure 2) illustrates the relationships between these variables, where positive values indicate that an increase in one 
variable leads to an increase in another, while negative values signify an inverse relationship. 

 

Figure 2 Pearson Correlation between numerical features in the data 

2.4. Artificial Lift Classification 

Figure 3 showcases the distribution of artificial lift (AL) methods across the dataset. It is evident that Sucker Rod Pump 
(SRP) emerges as the predominant lifting method within the field. However, despite GL’s prevalence, Figure 4 reveals 
that MTM_PCP and H_lift surpasses PCP and GL in cumulative oil production. 
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Figure 3 Artificial Lift distribution in the dataset 

 

Figure 4 Cumulative oil production by Artificial Lift 

2.5. Machine Learning Modelling 

A flowchart illustrating the workflow used in the creation of the ML models used in this work is presented in Figure 5. 
A Microsoft Office Excel Workbook was used as a data warehouse to hold the data. Python was used for all data 
engineering and machine learning implementations, with Jupyter serving as the integrated development environment 
(IDE). Pandas and NumPy were used for all numerical computations. The specific machine learning models that were 
taken into consideration were the Meta Model, Logistic Regression (LR), and the base models, Random Forest (RF), 
Extreme Gradient Boosting (GB) and Decision Tree (DT). The dataset was divided into three subsets: training, validation, 
and testing, with a distribution ratio of 50:25:25, respectively. This partitioning strategy was adopted to prevent 
overfitting of the machine learning models to the training data. By allocating separate portions for validation and testing, 
totaling 50% of the dataset, we ensured robust evaluation metrics that were independent of the training process. Both 
the validation and test sets were reserved exclusively for evaluation purposes, thus providing a reliable assessment of 
model generalization and performance. 
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Figure 5 Adopted Machine Learning Workflow 

The A.L. selection model is built using data and algorithms from over ten years of mature fields, which can be expressed 
as  

Y = f (X)    …………..          (1) 

or 

Lift selection model = Algorithm (Field data) 

Equation 1 [5] explains that the data quality determines the optimum AL selection. In supervised learning, the data are 
delivered to the algorithms, which are a collection of mathematical equations where the inputs X and outputs Y are 
given. By relating the input variables to the outputs and investigating the significance of each variable in the dataset, the 
algorithms are trained and learn. Based on training data, the algorithms then make the most accurate predictions for 
the fresh output (AL).  

2.5.1. Machine learning models utilized 

Random Forest  

Random forest is a machine learning technique for developing prediction models in many research endeavors. It is 
based on a bootstrapping and aggregation approach called bagging [16]. Often in prediction modelling, a goal is to 
reduce the number of variables needed to obtain a prediction in order to reduce the burden of data collection and 
improve efficiency [17]. Every decision tree in the RF modelling process is given a random set of replacement input data 
(a bootstrap sample), and it develops on its own from there. The primary reason for the RF model's accuracy is the 
synergy that results from combining the predictions made by each decision tree. There are three steps in the RF process. 
Using the input variables, n bootstrapping samples are generated as the initial step. Utilizing the maximal predictor 
split, an unpruned regression tree is constructed in the second phase, and the predictions from the n number of trees 
are aggregated in the final step [18] 

For a random data subset 𝑑(𝑥, 𝑦), the decision tree iteratively partitions the variable space  𝑥 as samples with close 
targets are aggregated. The data at node m is represented by 𝑑𝑚with 𝑁𝑚 samples. dm may be partitioned into subsets 

denoted as 𝑑𝑚
𝑟𝑖𝑔ℎ𝑡

 and 𝑑𝑚
𝑙𝑒𝑓𝑡

using each candidate split 𝜃(𝑝, 𝑡𝑚)  where 𝑝  and 𝑡𝑚  refer to a feature and threshold, 
respectively (Equation (2)). 

{
𝑑𝑚

𝑙𝑒𝑓𝑡
=  {(𝑥, 𝑦)| 𝑥𝑝 ≤  𝑡𝑚}

𝑑𝑚
𝑟𝑖𝑔ℎ𝑡

=  𝑑𝑚/𝑑𝑚
𝑙𝑒𝑓𝑡

     ……..  (2) 
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The candidate split is defined as a loss function 𝐻(•), as shown in Equation (3). 

𝐻(𝑑𝑚) =  
1

𝑁𝑚
∑ (𝑦 − ӯ𝑚)2

𝑦∈𝑑𝑚
  ……..  (3) 

Where 

ӯ𝑚 =  
1

𝑁𝑚

∑  

𝑦∈𝑑𝑚

 

The minimization of Equation (3) yields the parameters 𝜃(𝑝, 𝑡𝑚). 

𝐺(𝑑𝑚, 𝜃) =  
𝑁𝑚

𝑙𝑒𝑓𝑡

𝑁𝑚
𝐻 (𝑑𝑚

𝑙𝑒𝑓𝑡(𝜃)) +  
𝑁𝑚

𝑟𝑖𝑔ℎ𝑡

𝑁𝑚
 𝐻 (𝑑𝑚

𝑟𝑖𝑔ℎ𝑡(𝜃))   ………   (4) 

The recursion of Equation (4) continues for 𝑑𝑚
𝑟𝑖𝑔ℎ𝑡

 and 𝑑𝑚
𝑙𝑒𝑓𝑡

 until the maximum depth is achieved. The prediction of the 
RF model is thus obtained from Equation (5). 

𝑓(𝑥) =  
1

𝐾
∑ 𝐷𝑇𝑖(𝑥)𝐾

𝐾=1    …………..     (5) 

where K is the number of decision trees (DT) in the random forest. 

Extreme Gradient Boosting  

Extreme Gradient Boosting (XGBoost) is a scalable and efficient tree-based machine learning algorithm that has gained 
widespread use across various data analysis disciplines. Designed as an advanced implementation of gradient boosting, 
XGBoost is particularly effective for regression and classification tasks. The core principle behind XGBoost lies in the 
concept of boosting, which combines the predictions of multiple weak learners through an additive training approach 
to form a robust model. This process not only enhances predictive accuracy but also mitigates overfitting and improves 
computational efficiency [19]. 

The general function of the forecasting is set up at step 𝑝, as shown in Equation (6) 

𝑓𝑖
(𝑝)

=  ∑ 𝑓𝑘 (𝑥𝑖) =  𝑓𝑖
(𝑝−1)

 
𝑝
𝑘=1 + 𝑓𝑝 (𝑥𝑖)       ……   (6) 

where 𝑓𝑝 (𝑥𝑖) denotes the learner at step 𝑝, 𝑓𝑖
(𝑝)

denotes the prediction at 𝑝, 𝑓𝑖
(𝑝−1)

denotes the prediction at 𝑝−1, and 𝑥𝑖 

denotes the input features. 

To balance overfitting while maintaining computational efficiency, XGBoost incorporates a refined analytical formula, 
as presented in Equation (7), to evaluate the model’s "goodness of fit" to the original function. This approach ensures 
optimal performance by regulating complexity and enhancing predictive accuracy. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑝) =  ∑ 𝑙 (ӯ𝑖
𝑛
𝑘=1 , 𝑦𝑖) + ∑ 𝜎(𝑓𝑖)

𝑝
𝑘=1    …….  (7) 

where l presents the loss function, n presents the number of observations utilized, and σ presents the regularization 
term as represented in Equation (8). 

(𝑓) = 𝜣𝑇+0.5𝜆𝜔2      ………   (8) 

where ω expresses vector scores in leaves, ϒ expresses the minimal loss necessary to divide the leaf node further, 
and λ expresses the regularization parameters. 

Decision Tree 

A Decision Tree (DT) is composed of a root node, internal nodes, and leaf nodes, which are responsible for assigning 
class labels. The fundamental principle of DT is to identify the most informative features for each class label. In this 
study, the Classification and Regression Tree (CART) algorithm is employed, as it effectively handles both categorical 
features and outputs. The DT utilizes the Gini index at each node to determine the optimal split of the data. The Gini 
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index quantifies the probability of incorrect classification when features are randomly selected [20]. Given a decision 
tree training dataset, the Gini index is computed using Equation (9): 

𝐺𝑖𝑛𝑖 = 1 − ∑  (𝑃𝑖)2𝑛
𝑖=0     ………… (9) 

where Pi is the probability of partitioned data of class i in Dt and n is the total number of classes of Dt. The feature with 
a lower Gini value is used to split the data 

Logistic Regression 

Logistic Regression (LR) is a statistical model used for binary classification problems. It estimates the probability that a 
given input point belongs to a certain class. 

Mathematically, if we denote the input features as x and the output probability as p, the LR model is given by: 

𝑃 =  
1

1+ 𝑒−(β0+ β1)           ………      (10) 

where β0 and β1 are the parameters of the model. The model is trained by maximizing the likelihood of the observed 
data. 

The Stacked Model 

Stacking is an ensemble technique that enhances prediction performance by combining several models, frequently 
exceeding any one model in the ensemble [21]. The base level models are trained based on a complete training set, then 
the meta-model is fitted on the outputs of the base level model as features. In this case, the base models are Random 
Forest and Gradient Boosting Classification, and the meta-model is Logistic Regression. Figure 6 shows the stack model 
workflow that was implemented in this study. 

Base Models (Level-0 Models): The base models are trained based on the complete training set. Here, Random Forest 
and Gradient Boosting Classification are used as base models. Each base model predicts the target variable and these 
predictions are used as features for the next level. 

Meta Model (Level-1 Model): The meta-model, in this case, Logistic Regression, is trained on the outputs of the base 
models from the previous step. The meta-model is used to make the final prediction 

 

Figure 6 The implemented stack model  

Stacking was chosen because it effectively combines multiple models to improve predictive performance, leveraging the 
strengths of individual algorithms while reducing their weaknesses. By using Random Forest, Decision Tree and 
Gradient Boosting as base models, the approach captures diverse patterns in the data, while the Logistic Regression 
meta-model optimally integrates their outputs for better generalization. This ensemble method enhances robustness, 
mitigates overfitting, and has been proven to outperform single models in complex classification tasks, making it well-
suited for this study. 

2.5.2. SHAP Analysis for Feature Importance 

To enhance the interpretability of the predictive models and gain insights into their decision-making processes, the 
SHapley Additive exPlanations (SHAP) framework was utilized. SHAP, a game-theoretic approach introduced by Shapley 
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(1953) [22], assigns importance values to features by evaluating their individual contributions to the model’s 
predictions [23]. This method offers a transparent and consistent approach for explaining both individual predictions 
and overall feature importance within machine learning models. 

Interpretable machine learning aims to provide a deeper understanding of how models generate predictions, 
addressing key questions such as the relationships between input variables and outputs, as well as the features that 
significantly influence the prediction outcomes. Broadly, interpretability techniques fall into two categories: model-
specific approaches, which are tailored to specific algorithms, and model-agnostic methods, which can be applied 
universally across different models [24]. Given a model 𝑓and an input feature set 𝑋, the SHAP value 𝜙𝑖 for a feature 𝑋𝑖 
is determined by averaging its contribution across all possible feature subsets: 

𝜙𝑖 =  ∑
|𝑆|!(|𝑋|−|𝑆|−1)!

|𝑋|!
 (𝑓(𝑆 ∪𝑆⊆𝑋\{𝑋𝑖}  {𝑋𝑖}) − 𝑓(𝑆))    …….. (11) 

where: 
• 𝑆 represents a subset of all input features except 𝑋𝑖. 
• 𝑓(𝑆) denotes the model’s prediction using only the features in subset 𝑆. 
• f 𝑓(𝑆 ∪  {𝑋𝑖}) − 𝑓(𝑆)) measures the marginal contribution of 𝑋𝑖 . 

2.5.3. Model Performance Evaluation 

After testing the primary model assumptions, it was essential to evaluate the proposed models' predictive performance 
and classification capability. To achieve this, various performance evaluation metrics were employed. These metrics 
include accuracy, precision, recall, F1-score, and area under the curve (AUC), which assess the classification models' 
ability to distinguish between classes effectively. Additionally, precision-recall (PR) curves and confusion matrices were 
analysed to gain deeper insights into model performance, especially in handling imbalanced datasets. 

The classification performance metrics are defined as follows: 

• Accuracy measures the overall correctness of the model and is given by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      ………. (12) 

where 𝑇𝑃  and 𝑇𝑁  represent the correctly predicted positive and negative instances, respectively, while 𝐹𝑃  and 𝐹𝑁 
denote false positives and false negatives. 

• Precision quantifies the proportion of correctly classified positive instances out of all predicted positive 
instances: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   ……………… (13) 

A high precision score indicates fewer false positives. 

• Recall (Sensitivity) evaluates the model’s ability to identify all relevant positive instances: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
           ………….. (14) 

A high recall score suggests fewer false negatives. 

• F1-score is the harmonic mean of precision and recall, providing a balanced evaluation when dealing with 
imbalanced classes: 

𝐹1 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
       …………..(15) 

• Area Under the Receiver Operating Characteristic Curve (AUC-ROC) measures the model’s ability to 
distinguish between classes at various threshold levels. A higher AUC value signifies better discrimination 
capability. 
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• Precision-Recall (PR) Curve is particularly useful when dealing with imbalanced datasets, illustrating the 
trade-off between precision and recall. 

• Confusion Matrix provides a detailed breakdown of actual versus predicted classifications, helping identify 
patterns in misclassification. 

3. Results and discussion 

The field production data was used to train multiple machine learning (ML) models, optimizing their respective 
hyperparameters to enhance predictive performance. Table 1 presents the optimal hyperparameters obtained for each 
model through a combination of 5-fold cross-validation and a full-factor experimental grid search. The performance of 
these models was evaluated using key statistical metrics, which are discussed in Section 3.2. 

3.1. Hyperparameter Tuning 

To ensure optimal model performance, GridSearchCV with 5-fold cross-validation was employed for hyperparameter 
tuning. The best-performing hyperparameters for each model are summarized in Table 1. 

Table 1 Optimal Hyperparameters for the utilized ML models 

Model  Hyperparameters Final Optimized value 

DT 

max_depth 5 

min_samples_split 2 

random_state 9 

RF 

n estimators 500 

max depth 5 

max features 3 

random_state 9 

XGB 

max depth 5 

gamma 0.01 

n estimators 500 

subsample 1 

random state 9 

3.2. Model Performance Evaluation 

3.2.1. Classification Report 

Table 2 presents the classification report for the stacked model, summarizing its performance across multiple 
evaluation metrics, including precision, recall, and F1-score for each artificial lift (AL) method. 

Table 2 Stacked Model’s Classification Report 

 
precision recall f1-score support 

ESP 0.960784 0.816667 0.882883 60 

GL 0.964706 0.982036 0.973294 167 

H_Lift 0.975 0.966942 0.970954 121 

MTM_PCP 0.875 0.918033 0.896 122 

PCP 0.818182 0.818182 0.818182 33 
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SRP 0.982955 0.988571 0.985755 175 

accuracy 0.946903 0.946903 0.946903 0.946903 

macro avg 0.929438 0.915072 0.921178 678 

weighted avg 0.947633 0.946903 0.946634 678 

The stacked model demonstrated strong predictive performance, achieving an overall accuracy of 94.7%. The high 
precision and recall values indicate that the model effectively distinguishes between different artificial lift methods, 
minimizing both false positives and false negatives. Notably, SRP (Sucker Rod Pump) and Gas Lift (GL) exhibited the 
highest classification performance, with F1-scores of 0.9858 and 0.9733, respectively. Meanwhile, Progressive Cavity 
Pump (PCP) had the lowest F1-score (0.8182), suggesting relatively weaker predictive performance for this category. 
This could be attributed to a smaller dataset size (support = 33), leading to reduced model confidence in classifying PCP 
cases 

3.2.2. Confusion Matrix 

 

Figure 7 Plot of Model’s Confusion Matrix 

Figure 6 presents the confusion matrix, which provides a detailed breakdown of the model’s classification performance 
for each artificial lift (AL) method. The matrix compares actual versus predicted classifications, illustrating how well the 
model identifies each AL type. The diagonal elements represent correctly classified instances, showing that the model 
accurately predicted 49 out of 60 ESP cases, 164 out of 167 Gas Lift (GL) cases, and 173 out of 175 Sucker Rod Pump 
(SRP) cases. Similarly, the classification of Hydraulic Lift (H_Lift) and MTM_PCP was highly reliable, with 117 and 112 
correct predictions, respectively. The results show that the model performs well in distinguishing between different AL 
methods. The high number of correct predictions reinforces the effectiveness of the stacking model in selecting the 
appropriate artificial lift method based on field production data. 

3.2.3. ROC AUC and PR AUC Analysis 

The model's performance was also evaluated using both Receiver Operating Characteristic - Area Under the Curve (ROC 
AUC) and Precision-Recall Area Under the Curve (PR AUC) as shown in figure 8. While ROC AUC provides an overall 
measure of separability, PR AUC is more informative for handling imbalanced datasets as it focuses on precision and 
recall. 
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Table 3 ROC UAC and PR AUC values  

Class  ROC AUC PR AUC 

ESP 0.99 0.9593 

GL 0.99 0.9674 

H_Lift 0.98 0.9397 

MTM_PCP 0.96 0.8741 

PCP 0.99 0.9272 

SRP 0.98 0.9651 

Macro-Average - 0.9388 

Micro-Average - 0.9449 

The high ROC AUC scores (0.96–0.99) as shown in table 3 indicate that the model is effective in distinguishing between 
different classes. However, the PR AUC values (0.87–0.97) reveal differences in the model's ability to maintain precision, 
particularly for the MTM_PCP class (PR AUC = 0.87). This suggests that while the model can correctly identify this class, 
it struggles with false positives when recall is high. The macro-average PR AUC of 0.9388 and micro-average PR AUC of 
0.9449 further confirm that the model maintains strong overall performance, though precision varies across classes. 
Given the dataset's potential imbalance, PR AUC provides a more nuanced understanding of classification performance 

 

Figure 8 Multiclass (a) ROC curve of the stack model (b) PR curve of the stack model 

3.3. Sensitivity Analysis 

To interpret the contribution of each input feature to the model’s predictions, SHapley Additive exPlanations (SHAP) 
was employed. SHAP values quantify the impact of each feature on the model output, providing insights into their 
relative importance. 

Figure 9 presents the SHAP summary plot, where the mean absolute SHAP values represent the average magnitude of 
each feature’s contribution. The results indicate that Daily Production Fluid (BLPD) has the highest impact on the 
model’s classification decisions, followed by Daily Gas Production (MSCF/D), Daily Oil Production (STB/D), and Daily 
Sand Production (RB/D). This suggests that production-related parameters play a crucial role in determining the 
classification outcome. Additionally, features such as Daily Water Production (BWPD) and Water Cut (%) exhibit 
moderate importance, while Wellhead Pressure (psi) and Gas-Oil Ratio (GOR, SCF/STB) have the least influence on the 
model's predictions. These findings align with the physical understanding of well performance, where production rates 
significantly affect operational conditions. 
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Figure 9 SHAP Sensitivity plot of the Features in Predicting Artificial Lift Method 

 

Figure 10 SHAP Sensitivity plot for (a) ESP (b) GL (c) HL (d) MTM_PCP (e) PCP (f) SRP 
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To further investigate how each feature affects individual Artificial Lift predictions, the SHAP beeswarm plot was 
generated. This plot (Figure 10) provides a detailed, instance-level visualization of feature importance and their impact 
on model predictions. Each point represents a single observation, with its position along the x-axis indicating the SHAP 
value, which quantifies the effect of a feature on the model’s output. Features are sorted by importance, with the most 
influential ones appearing at the top. The color gradient represents feature values, where red signifies higher values 
and blue represents lower values. A positive SHAP value suggests an increase in the predicted output, whereas a 
negative SHAP value indicates a decrease. By capturing the interactions between different features and their directional 
effects, the beeswarm plot enhances the interpretability of the model’s decision-making process. For the H_Lift model, 
the strong influence of daily produced fluid is reasonable, as hydraulic lift systems rely on fluid movement to generate 
the necessary pressure differential for lifting. A higher fluid rate generally enhances system efficiency, provided the 
pump is operating within its designed capacity. However, in practical applications, factors like fluid viscosity and sand 
content can introduce additional challenges, such as increased pressure losses or equipment wear. Similarly, for the Gas 
Lift model, the dominance of daily oil production aligns with expectations since gas lift is primarily optimized for oil 
output. However, water cut can significantly impact efficiency by increasing the hydrostatic column weight, thereby 
requiring more gas injection to sustain lift performance. Additionally, sand production being a key factor is reasonable, 
as sand can erode gas lift valves and create flow restrictions, although its impact depends on the effectiveness of sand 
control measures. 

3.4. Comparison with Recent and Relevant Literatures 

To contextualize the accuracy of our study, we compare our model's performance with two similar recent studies in 
machine learning – informed artificial lift selection. Figure 11 summarizes the accuracies reported in these studies 
alongside our findings. The results indicate that our stack model outperforms the accuracy reported in both Mohaned 
et al [1] and Ounsakul et al [5], demonstrating the robustness and effectiveness of our approach. 

 

Figure 11 Model’s Comparison of accuracy with relevant studies 

4. Conclusion 

This study successfully developed and evaluated a machine learning-based approach for artificial lift selection using 
field production data. The stacked model achieved a high classification accuracy of 94.7%, outperforming models from 
previous studies. The confusion matrix and evaluation metrics confirmed that Sucker Rod Pump (SRP) and Gas Lift (GL) 
exhibited the highest predictive performance, while Progressive Cavity Pump (PCP) had the lowest due to data 
imbalance. SHAP sensitivity analysis revealed that daily fluid production, gas production, and oil production were the 
most influential parameters in lift selection. The findings align with operational expectations, reinforcing the critical 
role of production rates in artificial lift performance. The integration of machine learning in artificial lift selection 
enhances decision-making by providing data-driven insights, reducing reliance on heuristics, and improving efficiency. 
Future work could explore the integration of additional well parameters and optimization techniques to further refine 
predictive accuracy. 
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