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Abstract 

The industrial robots often use planetary gear system to have high joint torques; therefore, the influence of the rotary 
inertia of the number of the equally spaced planet-gears on the dynamical behavior of the robot is very important. The 
main objective of this paper is to develop the dynamic modeling of robot actuated by (n) equally spaced planet-gears in 
the case where the planet-carrier is fixed, no closed solution has been reported for this dynamic modeling, and to 
compare between the dynamic behavior of robot actuated by (n+1) and (n) equally spaced planet-gears for a same 
trajectory planning. The authors derive the explicit dynamic model for an elbow down of 2-R manipulator holding an 
external mass. Finally, the obtained simulation results of the dynamic modeling are verified by modeling the same robot 
and using an advanced simulation via SolidWorks. 
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1. Introduction

Industrial Robots are active systems that require a source of energy to power all their functions. The energy needed for 
operation must be distributed to the various functions and opportunely modulated, by power converters, which are 
themselves managed by a suitable low level controller. The power converters provide energy to actuators that 
transduce the electrical energy supplied by the source into the mechanical energy needed to perform the various tasks 
[1, 2, 3, 4]. The actuators provide power to act on the mechanical structure against gravity, inertia, and other external 
forces to modify the pose of the robot’s hand [5].  

To choose the components of an actuating system, it is worth starting from the requirements imposed on the mechanical 
power by the force and velocity that describe the joint motion [6].  

The execution of joint motions of a manipulator demands low speeds with high torques [6]. In general, such 
requirements do not allow an effective use of the mechanical features of electrical motors, which typically provide high 
speeds with low torques in optimal operating conditions. It is then necessary to interpose a transmission (gear) to 
optimize the transfer of mechanical power from the motor to the joint. During this transfer, the power is dissipated as 
a result of friction. 

The use of gearing is a well-established means for accomplishing such an objective because it is possible to use smaller 
actuators to deliver larger torques [7]. 

However, one of the biggest disadvantages of the addition of gearing is the presence of backlash that reduces the 
effective bandwidth of the controller since high frequency content in the control produces noisy and destructive 
operation [8]. 
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Most industrial robot manipulators are driven by motors through gears with high reductions ratios (from tens to a few 
hundreds). The use of gears permits an optimization of manipulator static and dynamic performance since the motors 
can be located on the link preceding the actuated joints along the kinematic chain. Further, typical robot applications 
require motions with large torques and relatively small velocities, and thus the use of gears allows joint actuation by 
motors of reduced size [8]. 

 The planetary gear system is widely used in robotics [9, 10], it is composed of one or more outer gears or planet gears, 
revolving around a sun gear driven by motor. Typically, the planets are mounted on a movable carrier, which rotates 
relatively to the sun gear. The planetary gearing systems may also include an outer ring gear or annulus, which meshes 
with the planet gears [9, 10, 11]. A planetary gear example modeled by SolidWorks (2014) is shown in Fig. 1. The 
advantages of planetary gears over parallel axis gears include high power density, large gear reduction in a small 
volume, multiple kinematic combinations, pure torsional reactions, and coaxial shafting. Among the disadvantages, one 
can note high bearing loads, inaccessibility and design complexity [9, 10]. 

The rotary inertia of the sun gear had a very significant influence on the dynamic behavior of planetary gear train [12]. 
The effect of gear dynamics and gear ratios on the inverse and forward dynamic models is a problem that is of current 
interest. For the inverse dynamics, the gear dynamics are most commonly approximated by a diagonal matrix added to 
the mass matrix [13, 14, 15]. Spong [16] explicitly assumes that the gyroscopic effects of the spinning rotor and gears 
are negligible. Springer et. Al [17] and Chen [18] used energy methods to add additional terms to the simple rigid model 
to account for the effects of gear ratios and gyroscopic forces. Walker and Orin [19] developed methods for the fast 
calculation of the manipulator mass matrix that could include the common gear approximation.  

We model the actuator with planetary gear system by using SolidWorks (2020) with no backlash. The planetary gear 
serves to deliver high output torques. The sun-gear has as input the torque given by the motor and gives torque to the 
outer ring gear through planet-gears, the output of the outer ring gear connected with the successive link as shown Fig. 
1. 

In this paper, we are interested on the effects of the rotary inertia of the number of the equally spaced planet-gears on 
the dynamic of the robot and we will consider that the planet carrier is fixed. A two-revolute (2-R) planar robot is 
modeled using the SolidWorks as shown in Fig. 1. Motors on each joint coupled with a planetary gear system actuate 
the manipulator that holds an external mass on the end effector. 

The rest of this paper is organized as follows: in the section 2 dynamic model of the manipulator, in section 3 the 
dynamic simulation, in section 4 discussion of the results followed by a conclusion in section 5.  

 

Figure 1 The joint of robot’s link actuated by planetary gear system 
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2. Dynamics modeling of robot actuated by (n) equally spaced planet-gears  

2.1. Dynamics modeling of robot actuated by the 3 equally spaced planet-gears  

2.1.1. Computation of Kinetic energy of robot  

The total kinetic energy is given by the following relation : (See Fig. 2) 

T=∑_(i=0)^n▒〖(T_(l_i )+T_(〖sg〗_(i+1) )+T_(〖pg2〗_(i+1) )+2T_(〖pg1〗_(i+1) ))〗…………. (1) 

It can be assumed that the contribution in the calculation of the kinetic energy of the (ring-gear) is included in that of 
the link on which the (ring-gear) is located, and thus the sole contribution of the sun-gear and planet-gears are to be 
computed. The sun-gears are located on the joint axes, the sun-gear (1) and planet-gears (1) are sitting on the ground 
and their weight will not affect the dynamics of the manipulators [5, 23].  

The total kinetic energy contribution of Link (i) is given by: 

T=T_(l_i )+T_(〖sg〗_(i+1) ) +T_(〖pg2〗_(i+1) )+2T_(〖pg1〗_(i+1) ) …………. (2) 

T_(l_i )=1/2 m_(l_i ) p ̇_(l_i)^T p ̇_(l_i ) +1/2 ω_i^T I_i ω_i…………. (3) 

〖 T〗_(〖sg〗_(i+1) )=1/2 m_(〖sg〗_(i+1) ) p ̇_(〖sg〗_(i+1))^T p ̇_(〖sg〗_(i+1)+) 

+1/2 ω_(〖sg〗_(i+1))^T I_(〖sg〗_i ) ω_(〖sg〗_(i+1) ) …………. (4) 

T_(〖pg1〗_(i+1) )=1/2 m_(〖pg〗_(i+1) ) p ̇_(〖pg〗_(1i+1))^T p ̇_(〖pg1〗_(i+1)+) 

+1/2 ω_(〖pg〗_(i+1))^T I_(〖pg〗_i ) ω_(〖pg〗_(i+1) ) …………. (5) 

T_(〖pg2〗_(i+1) )=1/2 m_(〖pg〗_(i+1) ) p ̇_(〖pg2〗_(i+1))^T p ̇_(〖pg2〗_(i+1)+) 

+1/2 ω_(〖pg〗_(i+1))^T I_(〖pg〗_i ) ω_(〖pg〗_(i+1) ) …………. (6) 

ϑ_(〖sg〗_(i+1) ) and ϑ_(〖pg〗_(i+1) ) are the angular position of the sun-gear and planet-gear respectively. 

ϑ ̇_(〖sg〗_(i+1) )=G_(sgr_(i+1) ) ϑ ̇_i …………. (7) 

ϑ ̇_(〖pg〗_(i+1) )=G_(pgr_(i+1) ) ϑ ̇_i …………. (8) 

here G_(sgr_(i+1) ) and G_(pgr_(i+1) )are the gear reduction ratios. 

In our case, the planet carrier is fixed, the gear reduction ratios can be calculated by using the relation of Willis [24, 25, 
26]:  

G_(sgr_(i+1) )=G_(sgr_i )=Z_rg/Z_sg =ϑ_(〖sg〗_i )/ϑ_i…………. (9) 

G_(pgr_(i+1) )=G_(pgr_i )=Z_rg/Z_pg =ϑ_(〖pg〗_i )/ϑ_i …………. (10) 

Where Z_sgthe number of sun-gear teeth is, Z_rg is the number of ring-gear teeth, and Z_pg is the number of planet-gear 
teeth. The ring-gear rotates at the rate G_(sgr_(i+1) ) in the negative direction of the sun-gear because the sun gear and 
the ring gear rotate through a planet gear. 

The angular velocity composition rule: 

The rotation of the link, sun-gear and planet-gears is about the z axis: 

ω_(i+1)=ω_i+ω_(i,i+1) …………. (11) 
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According to the angular velocity composition rule and the Eq. 7 the total angular velocity of the sun-gear is: 

ω_(〖sg〗_(i+1) )=ω_i+G_(sgr_(i+1) ) ϑ ̇_i z_(〖sg〗_(i+1) ) …………. (12) 

Where ω_i is the angular velocity of link (i) on which the sun-gear is located and z_(〖sg〗_(i+1) ) denotes the unit 
vector along the sun-gear axis. 

z_(〖sg〗_(i+1) )=z_(〖sg〗_i )=z_i=z_0=[0 0 1]^T…………. (13) 

In similar fashion, the angular velocity of the planet gear: 

ω_(〖pg〗_(i+1) )=ω_i+G_(pgr_(i+1) ) ϑ ̇_i z_(〖pg〗_(i+1) ) …………. (14) 

where: 

z_(〖pg〗_(i+1) )=z_(〖pg〗_i )=z_i=z_0=[0 0 1]^T …………. (15) 

Definition of the augmented link (i)  

The augmented body (i) is defined as the fictitious body consisting of the particles of body (i) itself and of a mass, equal 
to that of bodies (i+1,i+2,…n) attached to o_(i+1) . This definition can be applied regardless the type of joint (R) revolute 
joint or (p) prismatic joint) [28]. By using this definition, in our case, the mass of the augmented link (i) equals to the 
sum of the mass of link (i) with the mass of sun-gear and planet-gears in joint (i+1) as shown Fig. 2 and the mass of link 
(i) and the mass of the external mass as shown Fig. 3. 

In order to determine such parameters, it is worth associating the kinetic energy contributions of each sun-gear and 
planet-gears with those of the link on which it is located as shown Fig. 2. Hence, by considering the union of link (i)+sun-
gear and planet-gears (i+1) (augmented Link(i)), the kinetic energy of the augmented link can be shown by using the 
following demonstrations. With reference to the center of mass of the augmented link, the linear velocities of the link, 
sun-gear and planet-gears can be expressed: 

 

Figure 2 Characterization of augmented link (i) (link+sun-gear+planet-gears) for Kinetic energy 
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p ̇_(l_i ) =p ̇_(C_i )+ω_i×r_(C_i,l_i ) …………. (16) 

( p) ̇_(〖sg〗_(i+1) )=p ̇_(C_i )+ω_i×r_(C_i,〖sg〗_(i+1) ) …………. (17) 

p ̇_(〖pg1〗_(i+1) )=p ̇_(C_i )+ω_i×r_(C_i,〖pg1〗_(i+1 ) ) …………. (18) 

p ̇_(〖pg2〗_(i+1) )=p ̇_(C_i )+ω_i×r_(C_i,〖pg2〗_(i+1) ) …………. (19) 

Kinetic energy of link (i) relative to the overall centre of mass C_i 

By substituting Eq. 16 into Eq. 3, the kinetic energy of link (i) is given by the following: 

T_(l_i )=1/2 m_(l_i ) p ̇_(c_i)^T p ̇_(c_i ) S(ω_i ) m_(l_i ) r_(C_i,l_i ) +1/2 m_(l_i ) ω_i^T S^T (r_(C_i,l_i ) )S(r_(C_i,l_i ) ) 
ω_i+1/2 ω_i^T I_i ω_i…………. (20) 

By virtue of Steiner theorem, the following matrix is obtained: 

I ̅_(l_i )=I_(l_i )+m_(l_i ) S^T (r_(C_i,l_i ) )S(r_(C_i,l_i ) ) …………. (21) 

where: 

〖 I〗_(l_i )=[■(I_(l_ixx )&I_(l_ixy )&I_(l_ixz )@I_(l_iyx )&I_(l_iyy )&I_(l_iyz )@I_(l_i zx)&I_(l_izy )&I_(l_izz ) )] …………. 
(22) 

and: 

m_(l_i ) r_(C_i,l_i )=[m_(l_i ) r_(C_i,l_ix ) m_(l_i ) r_(C_i,l_iy ) m_(l_i ) r_(C_i,l_iz ) ]^T …………. (23) 

S(r_(C_i,l_i ) )=[■(0&-r_(C_i,l_iz )&r_(C_i,l_iy )@r_(C_i,l_iz )&0&-r_(C_i,l_ix )@-r_(C_i,l_iy )&r_(C_i,l_ix )&0)] …………. (24) 

I ̅_(l_i ) represents the inertia tensor of the link (i) relative to the overall centre of mass〖 C〗_i, Eq. 20 can be written as 
: 

T_(l_i )=1/2 m_(i_i ) p ̇_(c_i)^T p ̇_(c_i )+p ̇_(c_i)^T S(ω_i ) m_(l_i ) r_(C_i,l_i ) +1/2 ω_i^T I ̅_(l_i ) ω_i …………. (25) 

Kinetic energy of sun-gear relative to the overall center of mass〖 C〗_i  

By substituting Eq. 17 into Eq. 4 and exploiting Eq. 12, we obtain: 

T_(〖sg〗_(i+1) )=1/2 m_(〖sg〗_(i+1) ) p ̇_(c_i)^T p ̇_(c_i )+p ̇_(c_i)^T S(ω_i ) m_(〖sg〗_(i+1) ) r_(C_i,〖sg〗_(i+1) ) 

+1/2 ω_i^T I ̅_(〖sg〗_(i+1) ) ω_i+G_(sgr,i+1) q ̇_(i+1) z_(〖sg〗_(i+1))^T I_(〖sg〗_(i+1) ) ω_i+1/2 〖G_sgr^2〗

_(,i+1) q ̇_(i+1)^2 z_(〖sg〗_(i+1))^T I_(〖sg〗_(i+1) ) z_(〖sg〗_(i+1) ) …………. (26) 

By virtue of Steiner theorem, the following matrix is obtained: 

I ̅_(〖sg〗_(i+1) )=I_(〖sg〗_(i+1) )+m_(〖sg〗_(i+1) ) S^T (r_(C_i,〖sg〗_(i+1) ) )S(r_(C_i,〖sg〗_(i+1) ) ) …………. 
(27) 

Where: 

I_(〖sg〗_(i+1) )=[■(I_(〖sg〗_(i+1(xx)) )&I_(〖sg〗_(i+1(xy)) )&I_(〖sg〗_(i+1(xz)) )@I_(〖sg〗_(i+1(yx)) )&I_(〖

sg〗_(i+1(yy)) )&I_(〖sg〗_(i+1(yz)) )@I_(〖sg〗_(i+1(zx)) )&I_(〖sg〗_(i+1(zy)) )&I_(〖sg〗_(i+1(zz)) ) )] (28) 

and: 

m_(〖sg〗_(i+1) ) r_(C_i,〖sg〗_(i+1) )=[m_(〖sg〗_(i+1) ) r_(C_i,〖sg〗_(i+1x) ),m_(〖sg〗_i+1) r_(C_i,〖sg〗_(i+1y) 

) 〖 ,m〗_(〖sg〗_(i+1) ) r_(C_i,〖sg〗_(i+1z) ) ]^T …………. (29) 



International Journal of Frontiers in Engineering and Technology Research, 2023, 05(02), 042–060 

47 

S(r_(C_i,〖sg1〗_(i+1) ) )=[■(0&-r_(C_i,〖sg〗_(i+1z) )&r_(C_i,〖sg〗_(i+1y) )@r_(C_i,〖sg〗_(i+1z) )&0&-r_(C_i,〖sg

〗_(i+1x) )@-r_(C_i,〖sg〗_(i+1y) )&r_(C_i,〖sg〗_(i+1x) )&0)] …………. (30) 

I ̅_(〖sg〗_(i+1) )represents the inertia tensor of the sun-gear (i+1) relative to the overall center of mass〖 C〗_i.  

Kinetic energy of planet-gear (1) relative to the overall center of mass C_i  

By substituting Eq. 18 into Eq. 5 and exploiting Eq. 14, we obtain  

T_(〖pg1〗_(i+1) )=1/2 m_(〖pg〗_(i+1) ) p ̇_(c_i)^T p ̇_(c_i )+p ̇_(c_i)^T S(ω_i ) m_(〖pg〗_(i+1) ) r_(C_i,〖pg1〗

_(i+1) ) +1/2 ω_i^T I ̅_(〖pg〗_(i+1) ) ω_i+G_(pgr,i+1) q ̇_(i+1) z_(〖pg〗_(i+1))^T I_(〖pg〗_(i+1) ) ω_i+1/2 〖

G_pgr^2〗_(,i+1) q ̇_(i+1)^2 z_(〖pg〗_(i+1))^T I_(〖pg〗_(i+1) ) z_(〖pg〗_(i+1) ) …………. (31) 

By virtue of Steiner theorem, the following matrix is obtained: 

I ̅_(〖pg1〗_(i+1) )=I_(〖pg1〗_(i+1) )+m_(〖pg〗_(i+1) ) S^T (r_(C_i,〖pg1〗_(i+1) ) )S(r_(C_i,〖pg1〗_(i+1) ) ) (32) 

where: 

I_(〖pg1〗_(i+1) )=[■(I_(〖pg1〗_(i+1(xx)) )&I_(〖pg1〗_(i+1(xy)) )&I_(〖pg1〗_(i+1(xz)) )@I_(〖pg1〗_(i+1(yx)) 

)&I_(〖pg1〗 _(i+1(yy)) )&I_(〖pg1〗 _(i+1(yz)) )@I_(〖pg1〗 _(i+1(zx)) )&I_(〖pg1〗 _(i+1(zy)) )&I_(〖pg1〗
_(i+1(zz)) ) )] …………. (33)  

and: 

m_(〖pg〗_(i+1) ) r_(C_i,〖pg1〗_(i+1) )=[m_(〖pg〗_(i+1) ) r_(C_i,〖pg1〗_(i+1x) ) 〖,m〗_(〖pg〗_i+1) r_(C_i,〖pg1

〗_(i+1y) ) 〖 ,m〗_(〖pg〗_(i+1) ) r_(C_i,〖pg1〗_(i+1z) ) ]^T …………. (34)  

S(r_(C_i,〖pg1〗_(i+1) ) )=[■(0&-r_(C_i,〖pg1〗_(i+1z) )&r_(C_i,〖pg1〗_(i+1y) )@r_(C_i,〖pg1〗_(i+1z) )&0&-r_(C_i,

〖pg1〗_(i+1x) )@-r_(C_i,〖pg1〗_(i+1y) )&r_(C_i,〖pg1〗_(i+1x) )&0)] …………. (35)  

I ̅_(〖pg1〗_(i+1) )represents the inertia tensor of the planet-gear relative to the overall center of mass〖 C〗_i.  

Kinetic energy of planet-gear (2) relative to the overall center of mass C_i  

By substituting Eq. 19 into Eq. 6 and exploiting Eq. 14, we obtain  

T_(〖pg2〗_(i+1) )=1/2 m_(〖pg〗_(i+1) ) p ̇_(c_i)^T p ̇_(c_i )+p ̇_(c_i)^T S(ω_i ) m_(〖pg〗_(i+1) ) r_(C_i,〖pg2〗

_(i+1) ) +1/2 ω_i^T I ̅_(〖pg2〗_(i+1) ) ω_i+G_(pgr,i+1) q ̇_(i+1) z_(〖pg〗_(i+1))^T I_(〖pg2〗_(i+1) ) ω_i+1/2 〖

G_pgr^2〗_(,i+1) q ̇_(i+1)^2 z_(〖pg〗_(i+1))^T I_(〖pg2〗_(i+1) ) z_(〖pg〗_(i+1) ) …………. (36) 

By virtue of Steiner theorem, the following matrix is obtained: 

I ̅_(〖pg2〗_(i+1) )=I_(〖pg2〗_(i+1) )+m_(〖pg〗_(i+1) ) S^T (r_(C_i,〖pg2〗_(i+1) ) )S(r_(C_i,〖pg2〗_(i+1) ) ) 
…………. (37) 

where: 

I_(〖pg2〗_(i+1) )=[■(I_(〖pg2〗_(i+1(xx)) )&I_(〖pg2〗_(i+1(xy)) )&I_(〖pg2〗_(i+1(xz)) )@I_(〖pg2〗_(i+1(yx)) 

)&I_(〖pg2〗_(i+1(yy)) )&I_(〖pg2〗_(i+1(yz)) )@I_(〖pg2〗_(i+1(zx)) )&I_(〖pg2〗_(i+1(zy)) )&I_(〖pg2〗
_(i+1(zz)) ) )] …………. (38) 

and: 

m_(〖pg〗_(i+1) ) r_(C_i,〖pg2〗_(i+1) )=[m_(〖pg〗_(i+1) ) r_(C_i,〖pg2〗_(i+1x) ) 〖,m〗_(〖pg〗_i+1) r_(C_i,〖

pg2〗_(i+1y) ) 〖 ,m〗_(〖pg〗_(i+1) ) r_(C_i,〖pg2〗_(i+1z) ) ]^T…………. (39) 
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S(r_(C_i,〖pg2〗_(i+1) ) )=[■(0&-r_(C_i,〖pg2〗_(i+1z) )&r_(C_i,〖pg2〗_(i+1y) )@r_(C_i,〖pg2〗_(i+1z) )&0&-r_(C_i,

〖pg2〗_(i+1x) )@-r_(C_i,〖pg2〗_(i+1y) )&r_(C_i,〖pg2〗_(i+1x) )&0)] …………. (40) 

I ̅_(〖pg2〗_(i+1) )represents the inertia tensor of the planet-gear relative to the overall center of mass〖 C〗_i.  

Summing the contributions in Eq. 25, 26, 31 and Eq. 36 as in Eq. 2 gives the expression of the kinetic energy of 
augmented link (i) in the form : 

T_i=1/2 m_i p ̇_(c_i)^T p ̇_(c_i )+1/2 ω_i^T I ̅_i ω_i+G_(sgr,i+1) q ̇_(i+1) z_(〖sg〗_(i+1))^T I_(〖sg〗_(i+1) ) ω_i+1/2 〖

G_sgr^2〗_(,i+1) q ̇_(i+1)^2 z_(〖sg〗_(i+1))^T I_(〖sg〗_(i+1) ) z_(〖sg〗_(i+1) )+G_(pgr,i+1) q ̇_(i+1) z_(〖pg〗

_(i+1))^T I_(〖pg2〗_(i+1) ) ω_i+1/2 〖G_pg2r^2〗_(,i+1) q ̇_(i+1)^2 z_(〖pg2〗_(i+1))^T I_(〖pg2〗_(i+1) ) z_(〖sg

〗_(i+1) )+2G_(pgr,i+1) q ̇_(i+1) z_(〖pg2〗_(i+1))^T I_(〖pg1〗_(i+1) ) ω_i+〖G_pgr^2〗_(,i+1) q ̇_(i+1)^2 z_(〖pg1

〗_(i+1))^T I_(〖pg1〗_(i+1) ) z_(〖pg1〗_(i+1) ) …………. (41) 

where m_i=m_(l_i )+m_(〖sg〗_(i+1) )+3m_(〖pg〗_(i+1) ) and I ̅_i=I ̅_(l_i )+I ̅_(〖sg〗_(i+1) )+2I ̅_(〖pg1〗_(i+1) )+I ̅_(

〖pg2〗_(i+1) )are respectively the overall mass and inertia tensor relative to the position of center of mass of the 
augmented link. 

The inertia tensor of the augmented link can be written as: 

I ̅_i=[■(I ̅_ix&-I ̅_ixy&-I ̅_ixz@-I ̅_iyx&I ̅_iyy&-I ̅_iyz@-I ̅_izx&-I ̅_izy&I ̅_izz )] …………. (42) 

The position of center of mass of augmented link can be expressed by: 

m_(l_i ) P_(l_i )+m_(〖sg〗_(i+1) ) P_(〖sg〗_(i+1) )+2m_(〖pg〗_(i+1) ) P_(〖pg1〗_(i+1) )+m_(〖pg〗_(i+1) ) P_(〖

pg2〗_(i+1) )=m_i P_(C_i ) …………. (43) 

Computing the inertia tensor of the augmented link (link+external mass) relative to the position of center of mass as 
shown Fig. 3: 

 

Figure 3 Characterization of augmented link (i) (link+external mass) for Kinetic energy 
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The external mass is a sphere with mass (m_(e_m )) and radius (r).The inertia tensor about its center of mass is : 

〖 I〗_(e_m )=[■(I_(e_mxx )&I_(e_mxy )&I_(e_mxz )@I_(e_myx )&I_(e_myy )&I_(e_myz )@I_(e_mzx )&I_(e_mzy 
)&I_(e_mzz ) )] (44) 

m_(e_m ) r_(C_i,e_m )=[m_(e_m ) r_(C_i,e_mx ),m_(e_m ) r_(C_i,e_my ) ,m_(e_m ) r_(C_i,e_mz ) ]^T …………. (45) 

(r_(C_i,e_m ) )=[■(0&-r_(C_i,e_mz )&r_(C_i,e_my )@r_(C_i,e_mz )&0&-r_(C_i,e_mx )@-r_(C_i,e_my )&r_(C_i,e_mx )&0)] 
(46) 

I ̅_(e_m )=I_(e_m )+m_(e_m ) S^T (r_(C_i,e_m ) )S(r_(C_i,e_m ) ) …………. (47) 

where I ̅_(e_m ) represents the inertia tensor of the external mass relative to the overall centre of mass〖 C〗_i. . 

The position of center of mass of augmented link can be expressed by:  

m_(l_i ) p_(l_i )+m_(e_m ) p_(e_m )=m_i0 p_(C_i ) …………. (48) 

The kinetic energy of the augmented link can be expressed by: 

T_i=1/2 m_i0 p ̇_(c_i)^T p ̇_(c_i )+1/2 ω_i^T I ̅_io ω_i …………. (49) 

where〖 m〗_io=m_(l_i )+m_(e_m ) and I ̅_io=I ̅_(l_i )+I ̅_(e_m ) are respectively the overall mass and inertia tensor 
relative to the position of center of mass of the augmented link. 

On the assumption that the link, sun-gear, planet-gears and external mass have a symmetric mass distribution about 
the axis of rotation and the axis of link (i) frame coincides with the central axis of  

inertia, then the inertia products are null and the inertia tensor relative to the center of mass is a diagonal matrix [5, 
23]. 

The inertia tensor of sun-gear about its center of mass: 

I_(〖sg〗_(i+1))^(〖sg〗_(i+1) )=[■(I_(〖sg〗_(i+1(xx)))^(〖sg〗_(i+1) )&0&0@0&I_(〖sg〗_(i+1(yy)))^(〖sg〗

_(i+1) )&0@0&0&I_(〖sg〗_(i+1(zz)))^(〖sg〗_(i+1) ) )] …………. (50) 

The inertia tensor of planet-gear about its center of mass: 

I_(〖pg〗_(i+1))^(〖pg〗_(i+1) )=[■(I_(〖pg〗_(i+1(xx)))^(〖pg〗_(i+1) )&0&0@0&I_(〖pg〗_(i+1(yy)))^(〖pg〗

_(i+1) )&0@0&0&I_(〖pg〗_(i+1(zz)))^(〖pg〗_(i+1) ) )] …………. (51) 

Since the aim is to determine a set of dynamic parameters independent of the manipulator joint configuration, it is worth 
referring the inertia tensor of the link I ̅_i to frame R_i attached to the link and the inertia tensor of sun-gear and planet-
gear I_(〖sg〗_(i+1) ),I_(〖pg〗_(i+1) ) to frame R_(〖sg〗_(i+1) ) andR_(〖pg〗_(i+1) ) respectively,so that it is 
diagonal. In view of Eq. 50 and Eq. 51 one has: 

I_(〖sg〗_(i+1) ) z_(〖sg〗_(i+1) )=R_(〖sg〗_(i+1) ) I_(〖sg〗_(i+1))^(〖sg〗_(i+1) ) R_(〖sg〗_(i+1))^T z_(〖sg〗

_(i+1) )=I_(〖sg〗_(i+1) ) z_(〖sg〗_(i+1) ) …………. (52) 

I_(〖pg〗_(i+1) ) z_(〖pg〗_(i+1) )=R_(〖pg〗_(i+1) ) I_(〖pg〗_(i+1))^(〖pg〗_(i+1) ) R_(〖pg〗_(i+1))^T z_(〖pg〗

_(i+1) )=I_(〖pg〗_(i+1) ) z_(〖pg〗_(i+1) ) …………. (53) 

where I_(〖sg〗_(i+1) )=I_(〖sg〗_(i+1(zz)) ) and I_(〖pg〗_(i+1) )=I_(〖pg〗_(i+1(zz)) )=I_(〖pg1〗_(i+1(zz)) )=I_(

〖pg2〗_(i+1(zz)) ) denote the constant scalar moment of inertia of the sun-gear and planet-gear about the rotation 
axis. 

Therefore, the kinetic energy shown in Eq. 41 becomes: 
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T_i=1/2 m_i p ̇_(c_i)^(i^T ) p ̇_(c_i)^i+1/2 ω_i^T I ̅_i^i ω_i+G_(sgr,i+1) q ̇_(i+1) I_(〖sg〗_(i+1) ) z_(〖sg〗_(i+1))^(i^T ) 

ω_i+1/2 〖G_sgr^2〗_(,i+1) q ̇_(i+1)^2 I_(〖sg〗_(i+1) )+3G_(pgr,i+1) q ̇_(i+1) I_(〖pg〗_(i+1) ) z_(〖pg〗

_(i+1))^(i^T ) ω_i+3/2 〖G_pgr^2〗_(,i+1) q ̇_(i+1)^2 I_(〖pg〗_(i+1) ) …………. (54) 

According to the linear velocity composition rule for link (i), one may write: 

p ̇_(c_i)^i=p ̇_i^i+ω_i^i×r_(i,C_i)^i …………. (55) 

where all the vectors have been referred to frame (i), note that r_(i,C_i)^iis fixed in such a frame. Substituting Eq. 55 in 
Eq. 54 gives: 

T_i=1/2 m_i p ̇_i^(i^T ) p ̇_i^i+p ̇_i^(i^T ) S(ω_i^i ) m_i r_(i,C_i)^i +1/2 ω_i^(i^T ) I ̿_i^i ω_i^i+G_(sgr,i+1) q ̇_(i+1) I_(〖

sg〗_(i+1) ) z_(〖sg〗_(i+1))^(i^T ) ω_i+1/2 〖G_sgr^2〗_(,i+1) q ̇_(i+1)^2 I_(〖sg〗_(i+1) )+3G_(pgr,i+1) q ̇_(i+1) I_(

〖pg〗_(i+1) ) z_(〖pg〗_(i+1))^(i^T ) ω_i+3/2 〖G_pgr^2〗_(,i+1) q ̇_(i+1)^2 I_(〖pg〗_(i+1) ) …………. (56) 

In similar fashion, the kinetic energy of the augmented link (Link+sun-gear+planet-gears) actuated by (n) equally 
planet-gears: 

T_i=1/2 m_i p ̇_i^(i^T ) p ̇_i^i+p ̇_i^(i^T ) S(ω_i^i ) m_i r_(i,C_i)^i +1/2 ω_i^(i^T ) I ̿_i^i ω_i^i+G_(sgr,i+1) q ̇_(i+1) I_(〖

sg〗_(i+1) ) z_(〖sg〗_(i+1))^(i^T ) ω_i+1/2 〖G_sgr^2〗_(,i+1) q ̇_(i+1)^2 I_(〖sg〗_(i+1) )+(n)G_(pgr,i+1) q ̇_(i+1) 

I_(〖pg〗_(i+1) ) z_(〖pg〗_(i+1))^(i^T ) ω_i+((n))/2 〖G_pgr^2〗_(,i+1) q ̇_(i+1)^2 I_(〖pg〗_(i+1) ) …………. (57) 

where 

I ̿_i^i=I ̅_i^i+m_i S^T (r_(i,C_i)^i )S(r_(i,C_i)^i ) …………. (58) 

represents the inertia tensor with respect to the origin of frame (i), according to Steiner theorem. Let: 

r_(i,C_i)^i=[r_(i,C_ix)^i 〖,r〗_(i,C_iy)^i 〖,r〗_(i,C_iz)^i ]^T …………. (59) 

The first moment of inertia is: 

m_i r_(i,C_i)^i=[〖m_i r〗_(i,C_ix)^i 〖,m_i r〗_(i,C_iy)^i 〖,m_i r〗_(i,C_iz)^i ]^T …………. (60) 

From Eq. 58 the inertia tensor of augmented link (i) is: 

I ̿_i^i=[■(I ̅_ixx^i+m_i (r_(s_(i+1),C_iy)^(i^2 )+r_(s_(i+1),C_iz)^(i^2 ))&-I ̅_ixy^i m_i r_(s_(i+1),C_ix)^i 
r_(s_(i+1),C_iy)^i&-I ̅_ixz^i m_i r_(s_(i+1),C_ix)^i r_(s_(i+1),C_iz)^i@-I ̅_ixy^i m_i r_(s_(i+1),C_ix)^i 

r_(s_(i+1),C_iy)^i&I ̅_iyy^i+m_i (r_(s_(i+1),C_ix)^(i^2 )+r_(s_(i+1),C_iz)^(i^2 ))&-I ̅_iyz^i m_i r_(s_(i+1),C_iy)^i 
r_(s_(i+1),C_iz)^i@-I ̅_ixz^i m_i r_(s_(i+1),C_ix)^i r_(s_(i+1),C_iz)^i&-I ̅_iyz^i m_i r_(s_(i+1),C_iy)^i 

r_(s_(i+1),C_iz)^i&I ̅_izz^i+m_i (r_(s_(i+1),C_ix)^(i^2 )+r_(s_(i+1),C_iy)^(i^2 )))] …………. (61) 

I ̿_i^i=[■(I ̿_ixx^i&-I ̿_ixy^i&-I ̿_ixz^i@-I ̿_ixy^i&I ̿_iyy^i&〖-I 〗̿_iyz^i@-I ̿_izx^i&-I ̿_izy^i&I ̿_izz^i )] …………. (62) 

In similar fashion, the kinetic energy of the augmented link (link+external mass) actuated by (n) equally spaced planet-
gears: 

T_i=1/2 m_io p ̇_i^(i^T ) p ̇_i^i+p ̇_i^(i^T ) S(ω_i^i ) m_io r_(e_m,C_i)^i +1/2 ω_i^(i^T ) I ̿_io^io ω_i^i++G_(sgr,i+1) 
q ̇_(i+1) I_(〖sg〗_(i+1) ) z_(〖sg〗_(i+1))^(i^T ) ω_i+1/2 〖G_sgr^2〗_(,i+1) q ̇_(i+1)^2 I_(〖sg〗_(i+1) 

)+(n)G_(pgr,i+1) q ̇_(i+1) I_(〖pg〗_(i+1) ) z_(〖pg〗_(i+1))^(i^T ) ω_i+((n))/2 〖G_pgr^2〗_(,i+1) q ̇_(i+1)^2 I_(〖pg

〗_(i+1) ) …………. (63) 

where 

I ̿_io^io=I ̅_io^io+m_io S^T (r_(e_m,C_i)^i )S(r_(e_m,C_i)^i ) …………. (64) 

represents the inertia tensor with respect to the origin of frame (i), according to Steiner theorem. Let: 
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r_(e_m,C_i)^i=[r_(e_m,C_ix)^i,r_(e_m,C_iy)^i,r_(e_m,C_iz)^i ]^T …………. (65) 

The first moment of inertia is: 

m_io r_(e_m,C_i)^i=[〖m_io r〗_(e_m,C_ix)^i 〖〖,m〗_io r〗_(e_m,C_iy)^i 〖〖,m〗_io r〗_(e_m,C_iz)^i ]^T …………. 
(66) 

I ̿_io^io=[■(I ̅_ioxx^io+m_io (r_(e_m,C_iy)^(i^2 )+r_(e_m,C_iz)^(i^2 ))&-I ̅_ioxy^i m_io r_(e_m,C_ix)^i r_(e_m,C_iy)^i&-
I ̅_ioxz^i m_io r_(e_m,C_ix)^i r_(e_m,C_iz)^i@-I ̅_ioxy^i m_io r_(e_m,C_ix)^i r_(e_m,C_iy)^i&I ̅_ioyy^io+m_io 

(r_(e_m,C_ix)^(i^2 )+r_(e_m,C_iz)^(i^2 ))&-I ̅_ioyz^i m_io r_(e_m,C_iy)^i r_(e_m,C_iz)^i@-I ̅_ioxz^i m_io r_(e_m,C_ix)^i 
r_(e_m,C_iz)^i&-I ̅_ioyz^i m_io r_(e_m,C_iy)^i r_(e_m,C_iz)^i&I ̅_iozz^io+m_io (r_(e_m,C_ix)^(i^2 )+r_(e_m,C_iy)^(i^2 

)))] …………. (67) 

I ̿_io^io=[■(I ̿_ioxx^io&-I ̿_ioxy^io&-I ̿_ioxz^io@-I ̿_ioxy^io&I ̿_ioyy^io&〖-I ̿〗_ioyz^io@-I ̿_iozx^io&-
I ̿_iozy^io&I ̿_iozz^io )] …………. (68) 

2.1.2. Newton–Euler Formulation  

The Newton–Euler formulation describes the motion of the link in terms of a balance of forces and moments acting on 
it [27, 29], as shown Fig. 4. 

 

Figure 4 Characterization of augmented link (i) for Newton-Euler formulation 

The Newton equation for the translational motion of the center of mass can be written as: 

f_i-f_(i-1)+m_i g_0=m_i p ̈_(c_i ) …………. (69) 

The Euler equation for the rotational motion of the link (referring moments to the center of mass) can be written as: 

μ_i+f_i×r_(i-1,C_i )-μ_(i+1)-f_(i+1)×r_(i,C_i )=d/dt (I ̅_i ω_i+G_(sgr,i+1) q ̇_(i+1) I_(〖sg〗_(i+1) ) z_(〖sg〗_(i+1) 

)+3G_(pgr,i+1) q ̇_(i+1) I_(〖pg〗_(i+1) ) z_(〖pg〗_(i+1) ) ) …………. (70) 

WhereG_(sgr,i+1) q ̇_(i+1) I_(〖sg〗_(i+1) ) z_(〖sg〗_(i+1) )and G_(pgr,i+1) q ̇_(i+1) I_(〖pg〗_(i+1) ) z_(〖pg〗_(i+1) 
) are the angular momentum of the sun-gear and planet-gear respectively. Notice that the gravitational force m_i g_0 
does not generate any moment, since it is concentrated at the centre of mass. 

In our case, the angular momentum of the carrier equals to zero, because the carrier is fixed. 
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The inertia tensor of the augmented link (i) in the base: I ̅_i=R_i (I_i^i ) ̅R_i^T where R_i represents the rotation matrix 
from frame (i) to the base frame. Substituting this relation in the first term on the right-hand side of Eq. 70 yields: 

d/dt (I ̅_i ω_i )=R ̇_i 〖(I_i^i ) ̅R〗_i^T ω_i+R_i (I_i^i ) ̅R ̇_i^T ω_i+R_i (I_i^i ) ̅R_i^T ω ̇_i=S(ω_i ) R_i 〖(I_i^i ) ̅R〗_i^T 
ω_i+R_i (I_i^i ) ̅R_i^T S^T (ω_i ) ω_i+R_i (I_i^i ) ̅R_i^T ω ̇_i=I ̅_i ω ̇_i+ω_i×(I ̅_i ω_i) …………. (71) 

where: 

ω_i=〖[ω_ix,ω_iy 〖,ω〗_iz ]〗^T…………. (72) 

In our case, the rotation is done only in (z)axis, Eq. 72 becomes: 

ω_i=〖[0 0 ω_iz ]〗^(T ) …………. (73) 

and: 

S(ω_i )=[■(0&-ω_iz&0@ω_iz&0&0@0& 0 &0)] …………. (74) 

The second term of Eq. 71 represents the gyroscopic torque induced by the dependence of I ̅_i on link orientation. 
Moreover, by observing that the unit vector z_(〖sg〗_(i+1) ) rotates accordingly to link(i), the derivative needed in the 
second term on the right-hand side of Eq. 70 is: 

d/dt (G_(sgr,i+1) q ̇_(i+1) I_(〖sg〗_(i+1) ) z_(〖sg〗_(i+1) )+G_(sg,i+1) q ̇_(i+1) I_(〖pg〗_(i+1) ) z_(〖pg〗_(i+1) ) 

)=G_(sgr,i+1) (q ̈_(i+1) I_(〖sg〗_(i+1) ) z_(〖sg〗_(i+1) )+q ̇_(i+1) I_(〖sg〗_(i+1) ) ω_i×z_(〖sg〗_(i+1) ) 

)+G_(pgr,i+1) (q ̈_(i+1) I_(〖pg〗_(i+1) ) z_(〖pg〗_(i+1) )+q ̇_(i+1) I_(〖pg〗_(i+1) ) ω_i×z_(〖pg〗_(i+1) ) ) …………. 
(75) 

In deriving Eq.71, the operator S has been introduced to compute the derivative of R_i, also the property S^T (ω_i ) 
ω_i=0 has been utilized. 

By substituting Eq. 71, 75 in Eq. 70, the resulting Euler equation is: 

μ_i+f_i×r_(i-1,C_i )-μ_(i+1)-f_(i+1)×r_(i,C_i )=I ̅_i ω ̇_i+ω_i×(I ̅_i ω_i )+G_(sgr,i+1) (q ̈_(i+1) I_(〖sg〗_(i+1) ) z_(〖sg〗

_(i+1) )+q ̇_(i+1) I_(〖sg〗_(i+1) ) ω_i×z_(〖sg〗_(i+1) ) )+〖3G〗_(pgr,i+1) (q ̈_(i+1) I_(〖pg〗_(i+1) ) z_(〖pg〗

_(i+1) )+q ̇_(i+1) I_(〖pg〗_(i+1) ) ω_i×z_(〖pg〗_(i+1) ) ) …………. (76) 

The generalized force at Joint (i) can be computed by projecting the moment μ_i for a revolute joint, along the joint axis. 
In addition, there is the contribution of the inertia torques G_(sgr,i) I_(〖sg〗_i ) ω ̇_(〖sg〗_i)^T z_(〖sg〗_i ) and 

G_(pgr,i) I_(〖pg〗_i ) ω ̇_(〖pg〗_i)^T z_(〖pg〗_i )of the sun-gear and planet-gears respectively. 

he torque exerted at Joint (i) is expressed by: 

τ_i=μ_i^T z_(i-1)+G_(sgr,i) I_(〖sg〗_i ) ω ̇_(〖sg〗_i)^T z_(〖sg〗_i )+3G_(pgr,i) I_(〖pg〗_i ) ω ̇_(〖pg〗_i)^T z_(〖pg

〗_i )+F_vi ϑ ̇_i+F_si sgn(ϑ ̇_i) …………. (77) 

Where joint viscous torque (F_vi) and F_si Coulomb friction torque have been included, and in our case, we consider 
them neglected. 

The N-E recursive 

The following equations are calculated in current frame, because the recursion is computationally more efficient if all 
vectors are referred to the current frame on link (i) [27]. 

 The initial condition  

ω_0^0=ω ̇_0^0=p ̇_0^0=0 …………. (78) 
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p ̈_0^0=[ 0 g 0]^(T ) …………. (79) 

 Forward recursive equations in current frame 

ω_i^i=R_i^(〖i-1〗^T ) (ω_(i-1)^(i-1)+ϑ ̇_i z_0 ) …………. (80) 

ω ̇_i^i=R_i^(〖i-1〗^T ) (ω ̇_(i-1)^(i-1)+ϑ ̈_i z_(i-1)+ϑ ̇_i ω_(i-1)^(i-1)×z_0 ) …………. (81) 

ω ̇_(〖sg〗_i)^(i-1)=(ω ̇_(i-1)^(i-1)+G_sgri q ̈_i z_(〖sg〗_i)^(i-1)+G_sgri q ̇_i ω_(i-1)^(i-1)×z_(〖sg〗_i)^(i-1) ) …………. 
(82) 

ω ̇_(〖pg〗_i)^(i-1)=(ω ̇_(i-1)^(i-1)+G_(pgr,i) q ̈_i z_(g_i)^(i-1)+G_gri q ̇_i ω_(i-1)^(i-1)×z_(g_i)^(i-1) ) …………. (83) 

p ̈_i^i=R_i^(〖i-1〗^T ) p ̈_(i-1)^(i-1)+ω ̇_i^i× r_(i-1,i)^i+ω_i^i×(ω_i^i×r_(i-1,i)^i) …………. (84) 

p ̈_(c_i)^i=p ̈_i^i+ω ̇_i^i× r_(i,C_i)^i+ω_i^i×(ω_i^i×r_(i,C_i)^i) …………. (85) 

 Backward recursive equations in current frame 

f_i^i=R_(i+1)^i f_(i+1)^(i+1)+m_i p ̈_(c_i)^i (86) 

μ_i^i=-f_i^i×(r_(i-1,i)^i+r_(i,C_i)^i )+R_(i+1)^i μ_(i+1)^(i+1)+R_(i+1)^i f_(i+1)^(i+1)×r_(i,C_i)^i+(I_i^i 
) ̅ω ̇_i^i+ω_i^i×((I_i^i ) ̅ω_i^i )+G_(sgr,i+1) (q ̈_(i+1) I_(〖sg〗_(i+1) ) z_(〖sg〗_(i+1))^i+q ̇_(i+1) I_(〖sg〗_(i+1) ) 

ω_i^i×z_(〖sg〗_(i+1))^i )+3G_(pgr,i+1) (q ̈_(i+1) I_(〖pg〗_(i+1) ) z_(〖pg〗_(i+1))^i+q ̇_(i+1) I_(〖pg〗_(i+1) ) 

ω_i^i×z_(〖pg〗_(i+1))^i ) …………. (87) 

The joint exerted at the joint (i) in current frame 

τ_i^i=μ_i^(i^T ) R_i^(〖i-1〗^T ) z_0+G_(sgr,i) I_(〖sg〗_i ) ω ̇_(〖sg〗_i)^(〖i-1〗^T ) z_(〖sg〗_i)^(i-1)+3G_(pgr,i) 

I_(〖pg〗_i ) ω ̇_(〖pg〗_i)^(〖i-1〗^T ) z_(〖pg〗_i)^(i-1) …………. (88) 

In similar fashion, the equation of the joint torque of robot’s link actuated by (n) equally planet-gears: 

τ_i^i=μ_i^(i^T ) R_i^(〖i-1〗^T ) z_0+G_(sgr,i) I_(〖sg〗_i ) ω ̇_(〖sg〗_i)^(〖i-1〗^T ) z_(〖sg〗_i)^(i-1)+(n)G_(pgr,i) 

I_(〖pg〗_i ) ω ̇_(〖pg〗_i)^(〖i-1〗^T ) z_(〖pg〗_i)^(i-1) …………. (89) 

With μ_i^i=-f_i^i×(r_(i-1,i)^i+r_(i,C_i)^i )+R_(i+1)^i μ_(i+1)^(i+1)+R_(i+1)^i f_(i+1)^(i+1)×r_(i,C_i)^i+(I_i^i 
) ̅ω ̇_i^i+ω_i^i×((I_i^i ) ̅ω_i^i )+G_(sgr,i+1) (q ̈_(i+1) I_(〖sg〗_(i+1) ) z_(〖sg〗_(i+1))^i+q ̇_(i+1) I_(〖sg〗_(i+1) ) 

ω_i^i×z_(〖sg〗_(i+1))^i )+(n)G_(pgr,i+1) (q ̈_(i+1) I_(〖pg〗_(i+1) ) z_(〖pg〗_(i+1))^i+q ̇_(i+1) I_(〖pg〗_(i+1) ) 

ω_i^i×z_(〖pg〗_(i+1))^i ) …………. (90) 

3. Dynamic Simulation  

As an example of simulation, we choose an elbow down of 2-R planar robot as shown Fig. 5. The links of robot have the 
same length (0.4m) and actuated by 3, 4, 5 and 6 equally spaced planet-gears as shown Fig. 6. The simulation of the 
kinetic energy and the joint torque can be done by using the mass properties shown in Table. 1. The links of robot, sun-
gear, planet-gears and external mass are designed by using SolidWorks (2014) in such way the inertia tensor of link, 
sun-gear, planet-gears and external mass has a diagonal matrix about its center of mass in current frame, then the inertia 
tensor of the augmented link is also diagonal matrix about its overall center of mass〖 C〗_i in current frame. 

The 2-R robot moves between two positions during 1s (x=0.8m, y=0m) to (x=0.4499m, y=0.5864m) with jerk zero at 
start-stop path and gives the trajectory shown in Fig (7) and it’s verified by Matlab/simulink. Generation of trajectories 
with a bounded value of jerk improves the tracking accuracy and will allow to reach a higher speed of task execution, 
with eventually a reduction in the excitation of the resonant frequencies and the vibrations caused by the planetary gear 
system [30, 31, 32, 33]. We can compare between the two postures of 2-R robot by using the equations of the serial 
planar manipulators [34] in the dynamics modeling shown in section. 2 to choose the posture that has the power saving 
[35].  
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Figure 5 2-R robot actuated by planetary gear system modeled by using SolidWorks 

Table 1 The mass properties of 2-R robot actuated by (n) equally spaced planet-gears by using SolidWorks  

Parameter Value Unit 

Mass of augmented link(1) actuated by 3 ESPG (𝑚𝑖) 29 Kg 

Mass of augmented link(1) actuated by 4 ESPG (𝑚𝑖) 29.12 𝐾𝑔 

Mass of augmented link(1) actuated by 5 ESPG (𝑚𝑖) 29.24 𝐾𝑔 

Mass of augmented link(1) actuated by 6 ESPG (𝑚𝑖) 29.36 𝐾𝑔 

The inertia tensor of the augmented link(1) actuated by 3 ESPG (𝐼1̅𝑧𝑧
1 ) 0.40 𝐾𝑔. 𝑚2 

The inertia tensor of the augmented link(1) actuated by 4 ESPG (𝐼1̅𝑧𝑧
1 ) 0.4028 𝐾𝑔. 𝑚2 

The inertia tensor of the augmented link(1) actuated by 5 ESPG (𝐼1̅𝑧𝑧
1 ) 0.4056 𝐾𝑔. 𝑚2 

The inertia tensor of the augmented link(1) actuated by 6 ESPG (𝐼1̅𝑧𝑧
1 ) 0.4083 𝐾𝑔. 𝑚2 

The mass of the augmented link(2) (link+external mass) 29 𝐾𝑔 

The inertia tensor of the augmented link(2)(link+external mass) (𝐼2̅𝑜𝑧𝑧
2𝑜 ) 0.43 𝐾𝑔. 𝑚2 

The inertia tensor of the sun-gear (𝐼𝑠𝑔𝑖+1(𝑧𝑧)
) 0.01574 𝐾𝑔. 𝑚2 

The inertia tensor of the planet-gear (𝐼𝑝𝑔𝑖+1(𝑧𝑧)
) 0.00314 𝐾𝑔. 𝑚2 

The gear reduction ratios between the sun-gear and ring-gear (𝐺𝑠𝑔𝑟,𝑖+1 = 𝐺𝑠𝑔𝑟,𝑖) 2  

The gear reduction ratios between the planet-gear and ring-gear(𝐺𝑝𝑔𝑟,𝑖+1 = 𝐺𝑝𝑔𝑟,𝑖) 4  
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3.1. Kinetic energy simulation  

 
 

Figure 6 The kinetic energy of robot actuated by 3 
ESPG 

Figure 7 The kinetic energy of robot actuated by 3 ESPG by 
using SolidWorks 

 

 

 
 

Figure 8 The kinetic energy of robot actuated by 4 
ESPG 

 

Figure 9 The kinetic energy of robot actuated by 4 ESPG by 
using SolidWorks 
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3.2. Joint torques simulation  

  

Figure 10 The variation of joint torques of links of 
robot actuated by 3 ESPG 

 
 

Figure 11 The variation of joint torques of links of 
robot actuated by 3 ESPG by using SolidWorks 

 
 

  

Figure 12 The variation of joint torques of links of 
robot actuated by 4 ESPG 

Figure 13 The variation of joint torques of links of 
robot actuated by 4 ESPG by using SolidWorks 

4. Discussion 

The dynamics modeling of robot actuated by (n) equally spaced planet-gears show that the kinetic energy of the 
augmented link shown in Eq. 57 and Eq. 63 (link+ sun-gear+planet-gears, link+external mass) is linear with respect to 
the dynamic parameters, namely, the mass, the three components of the first moment of inertia shown in Eq. 60 and Eq. 
66, the six components of the inertia tensor shown in Eq. 62 and Eq. 68, and the moment of inertia of the sun-gear , 
planet-gears and external mass. The inertial effects of fast spinning sun-gear and planet-gears have a relevant influence 
on the dynamic behavior of manipulators. The effective sun-gear and planet-gears inertias are indeed multiplied by the 
square of gear ratios and the coupling torques and forces arise from the interaction with the link motion as shown in 
Eq. 57 and Eq. 89.  

We can notice from the results obtained of the dynamic simulation of a 2-R robot shown in section. 3 that the results 
obtained, whether using simulation results or SolidWorks (2020) are the same, this similarity of results confirms the 
reliability and correctness of the dynamic model studied. [35-40] 
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Nomenclature 

 𝐶𝑖: Center of mass of augmented link. 
 𝑙i: Center of mass of link (𝑖). 
 𝐼�̅� : Inertia tensor of augmented link (link+sun-gear+ planet-gears). 
 𝐼�̅�0: Inertia tensor of augmented link (link+external mass). 
 𝐼𝑠𝑔𝑖+1

: Moment of inertia of sun-gear about its center of mass. 

 𝐼𝑝𝑔𝑖+1
: Moment of inertia of planet-gear about its center of mass. 

 𝐼𝑒𝑚
: Moment of inertia of external mass about its center of mass. 

 𝑚𝑒𝑚
: Mass of external mass. 

 𝑚𝑙𝑖
: Mass of link (𝑖). 

 𝐼𝑙𝑖
: Moment of inertia of link (𝑖). 

 𝑚𝑠𝑔𝑖+1
: Mass of sun-gear. 

 𝑚𝑝𝑔𝑖+1
: Mass of planet-gears. 

 𝑚i: Mass of augmented link (link+sun-gear+planet-gears). 
 𝑚i0: Mass of augmented link (link+external mass). 
 𝑟𝑖−1,𝐶𝑖

: Vector from origin of frame (𝑖 − 1) to center of mass 𝐶𝑖.  

 𝑟𝑖,𝐶𝑖
: Vector from origin of frame (𝑖) to center of mass 𝐶𝑖. 

 𝑟𝑖−1,𝑖: Vector from origin of frame (𝑖 − 1) to the frame (𝑖). 

 𝑟𝑖−1,𝑙𝑖
: The vector from origin of frame (𝑖 − 1) to center of mass of link (𝑖). 

 𝑟𝐶𝑖,𝑙𝑖
: The vector from the center of mass 𝐶𝑖  to center of mass of link (𝑖). 

 𝑟𝐶𝑖,𝑠𝑔𝑖+1
: The vector from the center of mass 𝐶𝑖  to the joint axis where the sun-gear is located.  

 𝑟𝐶𝑖,𝑝𝑔𝑖+1
: The vector from the center of mass 𝐶𝑖  to the center of mass of the planet-gear.  

 𝑟𝐶𝑖,𝑒𝑚
: The vector from the center of mass 𝐶𝑖  to center of mass of external mass. 

 �̇�𝐶𝑖
: Linear velocity of center of mass 𝐶𝑖.  

 �̈�𝐶𝑖
: Linear acceleration of center of mass Ci. 

 �̇�𝑖: Linear velocity of origin of frame (𝑖). 
 �̈�𝑖: Linear acceleration of origin of frame (𝑖). 
 𝜔𝑖: Angular velocity of link (𝑖). 
 �̇�𝑖: Angular acceleration of link (𝑖). 
 𝜔𝑠𝑔𝑖

: Angular velocity of sun-gear. 

 𝜔𝑝𝑔𝑖
: Angular velocity of planet-gear. 

 �̇�𝑠𝑔𝑖
: Angular acceleration of sun-gear. 

 �̇�𝑝𝑔𝑖
: Angular acceleration of planet-gear. 

 𝑔0: Gravity accelaration. 
 𝑓𝑖: Force exterted by link (𝑖 − 1) on link (𝑖). 
 −𝑓𝑖+1: Force exterted by link (𝑖 + 1) on link (𝑖). 
 𝜇𝑖: Moment exterted by link (𝑖 − 1) on link (𝑖) with respect to origin of frame (𝑖 − 1). 
 𝜇𝑖+1: Moment exerted by link (𝑖 + 1) on link (𝑖) with respect to origin of frame (𝑖). 
 𝑃𝐶𝑖

: Vector from base coordinate system (x0, y0, z0) to position of center of mass of augmented link (𝑖). 

 𝑃𝑙𝑖
: Vector from base coordinate system (x0, y0, z0) to center of mass of link (𝑖). 

 �̇�𝑙𝑖
: Linear velocity from base coordinate system (x0, y0, z0) to center of mass of link (𝑖). 

 𝑃𝑠𝑔𝑖+1
: Vector from base coordinate system (x0, y0, z0) to the joint axis where the sun-gear is located.  

 𝑃𝑝𝑔𝑖+1
: Vector from base coordinate system (x0, y0, z0) to the center of mass of planet-gear.  

 �̇�𝑠𝑔𝑖+1
: Linear velocity from base coordinate system (x0, y0, z0) to the joint axis where the sun-gear is located.  

 �̇�𝑝𝑔𝑖+1
: Linear velocity from base coordinate system (x0, y0, z0) to the center of mass of planet-gear.  

 𝑃𝑒𝑚
: Vector from base coordinate system (x0, y0, z0) to center of mass of external mass. 

 𝑒𝑚: The center of mass of external mass. 
 𝑟 : The radius of external mass. 
 𝑟𝑒𝑚 ,𝐶𝑖

: The vector from the center of mass of external mass to center of mass of augmented link (𝑖). 

 𝑆 : Skew symetric matrix. 
 𝑅𝑖: The rotation matrix from Frame (𝑖) to base frame (x0, y0, z0). 
 𝐺𝑠𝑔𝑟𝑖+1

:The gear reduction ratios between sun-gear and ring-gear. 



International Journal of Frontiers in Engineering and Technology Research, 2023, 05(02), 042–060 

58 

 𝐺𝑝𝑔𝑟𝑖+1
:The gear reduction ratios between planet-gear and ring-gear. 

 Z𝑟𝑔: The number of ring gear teeth. 

 Z𝑠𝑔: The number of sun-gear teeth. 

 Z𝑝𝑔: The number of planet-gear teeth. 

 𝑇𝑙𝑖
: The kinetic energy of link (𝑖). 

 𝑇𝑠𝑔𝑖+1
 : The kinetic energy of the sun-gear. 

 𝑇𝑝𝑔𝑖+1
 : The kinetic energy of the planet-gear. 

 𝑇𝑖  : The Kinetic energy of the augmented link. 

Abbreviation 

 ESPG: Equally spaced planet-gears. 

5. Conclusion 

The dynamics modeling of robot holding an external mass and actuated by (n) equally spaced planet-gears are studied. 
The verification of the dynamic modeling of 2-R robot actuated by (n) equally spaced planet-gears by using the software 
SolidWorks (2020) permitted us to qualitatively develop and highlight the relevance of the dynamic model studied. 
These results are verified for 3-R planar robot and 3-R PUMA robot, and the dynamic modeling shown in section (2) are 
also verified by using Lagrange formulation.  
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