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Abstract 

Self-maps are widely encountered in the sub-universes modeled by databases, from genealogical trees to sports, from 
education to healthcare, etc. Their properties must be discovered and enforced by the software applications managing 
such data to guarantee their plausibility. The (Elementary) Mathematical Data Model provides 13 dyadic-type self-
map constraint types. MatBase, an intelligent data and knowledge base management system prototype, allows 
database designers to simply declare them by only clicking corresponding checkboxes and automatically generates 
code for enforcing them. This paper describes the algorithms that MatBase uses for enforcing all these 13 self-map 
constraint types, which may also be used by developers not having access to MatBase.  

Keywords: Database constraints; Self-maps; Dyadic relations; Modelling as programming; The (Elementary) 
Mathematical Data Model; MatBase  

1. Introduction

Very many database (db) sub-universes include self-maps (self-functions, autofunctions, e.g., [1 – 4]). Self-maps are 
cases of both functions (i.e., of type f : D → D) and dyadic relations (i.e., for which the first Canonical projection is the 
unity function of D, 1D : D → D, 1D(x) = x, xD, and the second one is f ) [5]. As such, besides general function 
properties (i.e., one-to-oneness / injectivity, ontoness / surjectivity, etc.), they also enjoy most of the dyadic relation 
type ones.  

For example, Mother : PERSONS → PERSONS, Father : PERSONS → PERSONS, Spouse : PERSONS → PERSONS, KilledBy : 
PERSONS → PERSONS, RefersTo : EMPLOYEES → EMPLOYEES, and ParentDynasty : DYNASTIES → DYNASTIES are self-
maps frequently encountered in db schemes.  

The (Elementary) Mathematical Data Model ((E)MDM) [2, 4, 6] considers 11 types of dyadic constraints [7, 8]; only the 
following 8 ones also apply to self-maps: reflexivity, irreflexivity, symmetry, asymmetry, transitivity (idempotency), 
intransitivity (anti-idempotency), equivalence, and acyclicity. Moreover, canonical surjectivities are also self-maps [2 – 
4].  

For example, Mother and Father are irreflexive (i.e., nobody may be his/her mother / father), asymmetric (i.e., nobody 
may be the parent of his/her parents), anti-idempotent / intransitive (i.e., no parent may be his/her parent), and 
acyclic (i.e., nobody may be his/her ancestor); as for dynasties similar properties are true, ParentHouse too is 
irreflexive, asymmetric, anti-idempotent, and acyclic; Spouse is irreflexive (i.e., nobody may be his/her spouse), 
symmetric (i.e., whenever w is the spouse of h, h is the spouse of w), and anti-idempotent / intransitive (as it is 
irreflexive).  
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On one hand, as with any other constraint (business rule), failing to enforce any of the above ones could lead to storing 
unplausible data in the corresponding db (e.g., for some persons x and y, Mother(x) = x or Spouse(x) = y and Spouse(y) 
≠ x).  

On the other hand, as reflexivity, symmetry, and idempotency constraints are of type tuple generating, enforcing them 
is also saving time for end-users, as the corresponding self-map values may be automatically generated by the db 
software applications managing that data.  

We recall that [2 – 4]:  

 The only reflexive (so equivalence as well) self-maps are the unity functions;  
 A self-map is symmetric if and only if (iff) its square is the unity function of its domain; 
 A self-map is idempotent iff its square is equal to itself;  
 A self-map is a canonical surjection iff it is totally defined, onto, and idempotent.  

Please note that, as for any other db interesting functions, self-maps may be partially defined: e.g., there are persons 
with unknown parents, persons not married, dynasties not having parent ones, etc. For such cases, db theory 
considers a countable distinguished set of null values denoted NULLS. Hence, generally, a self-map definition might be 
of the type f : D → D  NULLS.  

Consequently, apart from the 9 “standard” self-map dyadic-type above mentioned constraints, the (E)MDM also 
considers the following 4 additional ones: null-reflexivity, null-symmetry, null-idempotency, and null-equivalence [2 – 
4]. f : D → D  NULLS is said to be:  

 null-reflexive, iff f(x)  {x}  NULLS,  x D;  
 null-symmetric, iff f(x) = y  f(y)  { x }  NULLS,  x, y D; 
 null-idempotent, iff f(x) = y  f(y)  { y }  NULLS, x, y D;  
 null-equivalence, iff it is null-reflexive.  

Please note that, in dbs, reflexive atomic self-maps are of no use: why would anybody duplicate the surrogate primary 
key of a table? However, reflexivity of composed self-maps is crucial in correctly modeling some sub-universes of 
discourse. For example, given functions LDrive : FOLDERS → LDRIVES (storing for each file folder the logic drive on 
which it is stored) and RootFolder : LDRIVES → FOLDERS (storing for each logic drive its corresponding root file 
folder), the composed function LDrive  RootFolder must be reflexive, i.e. LDrive(RootFolder(x)) = x, for any x in 
LDRIVES, as the root folder of any logic drive must belong to that logic drive.  

Of course, the dyadic-type self-map types of constraints are not enough for guaranteeing data plausibility, not even for 
PERSONS: as usual, all other existing constraints in the corresponding sub-universe should also be enforced. For 
example, Mother • Spouse acyclic (No woman may be the spouse of one of her children, grandchildren, or 
descendants.), Father • Spouse acyclic (No man may be the spouse of one of his children, grandchildren, or 
descendants.), etc.  

Unfortunately, while, for example, uniqueness may be enforced by almost any commercial Database Management 
System (DBMS), with unique indexes, no such DBMS may enforce dyadic-type self-map constraints. Consequently, 
developers must enforce them into the software applications that manage corresponding dbs (through either 
extended SQL triggers or event-driven methods of high-level programming languages embedding SQL).  

MatBase [2, 3, 4, 7, 8, 10] is an intelligent prototype data and knowledge base management system, based on both the 
(E)MDM, the Entity-Relationship (E-R) Data Model (E-RDM) [1, 12, 13], the Relational Data Model (RDM) [1, 14, 15], 
and Datalog [4, 15, 16].  

Fortunately, MatBase provides, through its (E)MDM interface, both a very user-friendly experience to db architects 
(e.g., for the Mother, Father, Mother • Spouse, and Father • Spouse of PERSONS above, you only need to click their 
corresponding Acyclic checkboxes, as their other 3 properties are implied by it, so redundant) and its associated code-
generating power, which is both constructing underlying db tables, standard MS Windows forms for them, as well as 
event-driven code in their classes for enforcing the corresponding constraints that cannot be enforced by the available 
DBMS.  
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As such, MatBase is not only saving developing time, but also saves testing and debugging time, which promotes the 
5th programming generation – modelling as programming [9 – 11]. This paper presents the pseudocode algorithms 
used by MatBase to automatically generate code for enforcing dyadic-type self-map constraints, being a continuation 
of [3], which was mainly focused on assisting the process of detecting self-map constraints: it refines its A2 Algorithm 
(which is a very high level one, mainly dealing with the coherence and minimality of the sets of self-map constraints) 
for each type of dyadic-type self-map constraints.  

Other approaches related to the (E)MDM are based on business rules management (BRM) [17 – 22] and their 
corresponding implemented systems (BRMS) and process managers (BPM), like the IBM Operational Decision 
Manager [23], IBM Business Process Manager [24], Red Hat Decision Manager [25], Agiloft Custom Workflow/BPM 
[26], etc.  

They are generally based on XML (but also on the Z notation, the Business Process Execution Language, the Business 
Process Modeling Notation, the Decision Model and Notation models, Drools Rule Language files, guided decision 
tables, or the Semantics of Business Vocabulary and Business Rules).  

This is the only other field of endeavor trying to systematically deal with business rules, even if informally. However, 
this is not done at the db design level, but at the software application one, and without providing automatic code 
generation.  

From this perspective, (E)MDM also belongs to the panoply of tools expressing business rules and MatBase is also a 
BRMS, but a formal, automatically code generating one.  

2. Material and Methods 

Let f : D → D  NULLS be an arbitrary self-map defined on and taking values from a set D. For enforcing self-map type 
constraints on f, D must have a Graphic User Interface (GUI) form (associated to its corresponding table) whose class 
D must contain the following private variables and event-driven methods (see Figure 1):  

 Definition of an integer variable fOldValue, as well as of Boolean ones fSymmForce1, fSymmForce2, and 
fIdemForce1;  

 A Current(x) method, to be automatically called each time the cursor of the D’s form enters a new element (line, 
row, record) x of its underlying data table; 

 A f_BeforeUpdate(x) method, to be automatically called each time a new or existing element x of its underlying 
data whose fOldValue value for column f was modified and is about to be saved in the db; 

 A BeforeUpdate(x) method, to be automatically called each time a new or existing element x of its underlying 
data whose values for any column was modified is about to be saved in the db; 

 An AfterUpdate(x) method, to be automatically called each time the new values of an existing element x of its 
underlying data were successfully just saved to the db. 

All these methods and variables are automatically generated by MatBase the first time it needs them. Code insertion in 
all these methods is always done immediately before their blank code line (see Figure 1).  

Moreover, MatBase has in its public General library the function definition shown in Figure 2, needed for enforcing 
self-map acyclicities.  

2.1. Enforcing reflexivity and null-reflexivity constraints  

According to the reflexivity definition, enforcing such constraints for f requires that:  

 Each time a new element x is added to D, f(x) must be automatically set to x if f is totally defined. 
 Modification of f(x) must be made only to x or a null value (if f is not totally defined). 
 Deletion of f(x) may be possible only if f is not totally defined.  

Consequently, MatBase adds the pseudocode algorithms from Figure 3 to the corresponding methods from Figure 1. 

2.2. Enforcing irreflexivity constraints  
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According to the irreflexivity definition, enforcing such constraints for f requires rejecting attempts to save for f(x) the 
value x. Consequently, MatBase adds the pseudocode algorithm from Figure 4 to the method f_BeforeUpdate from 
Figure 1.  

2.3. Enforcing symmetry and null-symmetry constraints  

According to the symmetry definition, enforcing such constraints for f requires that modifications of f(x) must be made 
only to x, an existing y from D, or a null value (if f is not totally defined) and:  
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Figure 1 The initial pseudocode automatically generated by MatBase for the D’s class 

 

Figure 2 The pseudocode of function IsPath from the MatBase’s General library 
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Figure 3 Code added to the methods from Figure 1 when f is reflexive 

 

Figure 4 Code added to method f_BeforeUpdate from Figure 1 when f is irreflexive 

 New f’’s value may be null only if f is not total; 

 If old f(x)’s value was null and its new value is y ≠ x, y  D, then:  

o Modification must be rejected if f is reflexive as well; 
o If f is totally defined, modification must be rejected if f(y) ≠ y (as y is then symmetrically paired with some z), 

whereas otherwise f(y) must be set to x;  
o Else (i.e., f accepts nulls) if z = f(y) is not null then f(z) must be set to null and, anyhow, f(y) must be set to x;  

 If old f(x)’s value was a not null z and its new value is y ≠ x, y  D, then:  

o Modification must be rejected if z = x and f is reflexive as well; 
o If f is totally defined, modification must be rejected if f(y) ≠ y (as y is then symmetrically paired with some u, 

just as z is paired with x), whereas otherwise f(y) must be set to x;  
o Else (i.e. f accepts nulls) if u = f(y) is not null then f(u) must be set to null and, anyhow, f(y) must be set to x;  

 If old f(x)’s value was a not null z ≠ x and its new value is x, then:  

o If f is irreflexive then modification must be rejected; 
o Else f(z) must be set to a null value.  

Consequently, MatBase adds the pseudocode algorithm from Figure 5 to the method f_BeforeUpdate from Figure 1.  

2.4. Enforcing asymmetry constraints  

According to the asymmetry definition, enforcing such constraints for f requires that each time a new not null value y 
 D, y ≠ x, is about to be saved for f(x), saving must be canceled if f(y) = x. Consequently, MatBase adds the pseudocode 
algorithm from Figure 6 to the method f_BeforeUpdate from Figure 1. 
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Figure 5 Code added to method f_BeforeUpdate from Figure 1 when f is symmetric 

 

Figure 6 Code added to method f_BeforeUpdate from Figure 1 when f is asymmetric 

2.5. Enforcing idempotency and null-idempotency constraints  

According to the idempotency definition, enforcing such constraints for f requires that modifications of f(x) must be 
made only to x, an existing y from D, or a null value (if f is not totally defined) and:  

 New f’’s value may be null only if f is not total; 

 If old f(x)’s value was null and its new value is y ≠ x, y  D, then: 

o Modification must be rejected if f is irreflexive as well;  

o Otherwise f(y) must be set to y; 

 If old f(x)’s value was a not null z and its new value is y ≠ x, y  D, then: 

o Modification must be rejected if z = x and f is reflexive as well; 

o If f is totally defined, modification must be rejected if f(y) ≠ y, whereas otherwise f(y) must be set to y; 

o Else (i.e. f accepts nulls) if u = f(y) is not null then f(u) must be set to null and, anyhow, f(y) must be set to y;  

 if old f(x)’s value was a not null z ≠ x and its new value is x, then: 
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o If f is irreflexive then modification must be rejected; 

o Else if f(z) is not equal to z, then it must be set to a null value, if f is not totally defined, and otherwise the 

modification must be rejected.  

Consequently, MatBase adds the pseudocode algorithm from Figure 7 to the method f_BeforeUpdate from Figure 1.  

 

Figure 7 Code added to method f_BeforeUpdate from Figure 1 when f is idempotent  

2.6. Enforcing anti-idempotency constraints  

According to the anti-idempotency definition, enforcing such constraints for f requires rejecting attempts to save for 
f(x) a not null value y with f(y) = y. Consequently, MatBase adds the pseudocode algorithm from Figure 8 to the method 
f_BeforeUpdate from Figure 1. 

 

Figure 8 Code added to method f_BeforeUpdate from Figure 1 when f is anti-idempotent 

2.7. Enforcing equivalence and null-equivalence constraints  

According to the definition of relation equivalence, enforcing it for f requires that f be both reflexive, symmetric, and 
idempotent. However, as the only reflexive self-maps are the unity ones, symmetry and idempotency are redundant in 
this case. Consequently, equivalence and null-equivalence are enforced by the algorithms from subsection 2.1 (Figure 
3).  
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2.8. Enforcing acyclicity constraints  

According to the acyclicity definition, enforcing such constraints for f requires rejecting any not null value f(x) 
whenever there is a path in f’’s graph from it to x, i.e., there exists a set of elements {x1, …, xn}  D, n  0, such that f(x) = 
x1, f(x1) = x2, …, f(xn) = x.  

Consequently, MatBase adds the pseudocode algorithm from Figure 9 to the method f_BeforeUpdate from Figure 1. 

 

Figure 9 Code added to method f_BeforeUpdate from Figure 1 when f is acyclic  

2.9. Enforcing canonical surjectivity constraints  

According to the canonical surjectivity characterization theorem, enforcing such constraints for f requires to enforce 
f’’s both totality, ontoness, and idempotency. Please recall that ontoness (surjectivity) requires that, for any element y 
of D, there is at least one element x of D such that y = f(x).  

Consequently, MatBase adds the pseudocode algorithms from Figures 7 and 10 to the corresponding methods from 
Figure 1. 

 

Figure 10 Code added to the corresponding methods from Figure 1 when f is a canonical surjection 

2.10. The MatBase algorithm for enforcing above constraint types  

Figures 11 to 14 show the MatBase Algorithm A9DSM for enforcing self-map constraints. 

3. Result and Discussion  

For example, it is straightforward to check that applying the Algorithm A9DSM from Figure 11 to D = PERSONS and its 
self-maps Mother, Father, and Spouse from section 1, MatBase automatically generates for D’s class the pseudocode 
shown in Figure 15.  

Generally, the Algorithm A9DSM from Figure 11 automatically generates code that is guaranteeing data plausibility for 
any self-map for which all its properties are declared to MatBase as corresponding constraints, while also 
automatically generating appropriate data values for reflexivities, symmetries, and idempotencies, thus saving most of 
the developing, testing, and data entering effort.  

Moreover, please note that the (E)MDM also includes constraints on binary homogeneous function products [2,4,5] 
like Mother • Spouse, Father • Spouse, Mother • Father (which is irreflexive, asymmetric, inEuclidian, and acyclic), all of 
them defined on PERSONS and taking values from PERSONS2 etc., which are particular cases of dyadic relationships as 
well. 

Future research will be devoted to describing the code that MatBase automatically generates for enforcing the 
constraints associated with homogeneous binary function products.  
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Figure 11 MatBase algorithm A9DSM for enforcing dyadic-type self-map constraints 

 

Figure 12 Method enforceReflexivity of Algorithm A9DSM 

 

Figure 13 Method enforceSymmetry of Algorithm A9DSM 

 

Figure 14 Method enforceIdempotency of Algorithm A9DSM 
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Figure 15 MatBase automatically generated code in class PERSONS for enforcing dyadic-type constraints on self-maps 
Mother, Father, and Spouse 
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Figure 15 (Continued) 

4. Conclusion 

Not enforcing any existing business rule from the sub-universe managed by a db software application allows saving 
unplausible data in its db. This paper presents the algorithms needed to enforce the dyadic-type self-map constraint 
types from the (E)MDM, which are implemented in MatBase, an intelligent DBMS prototype. Moreover, as it 
automatically generates the corresponding code, MatBase is a tool of the 5th generation programming languages – 
modelling as programming: db and software architects only need to assert the properties of the self-maps (and not 
only, but of all other (E)MDM constraint types), while MatBase saves the corresponding developing, testing, and 
debugging time. Obviously, these algorithms may also be used by developers not having access to MatBase.  
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