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Abstract 

Bottomhole flowing pressure (BHFP) is a critical parameter in analyzing oil and gas well performance, production 
forecasting and reservoir management. This study is focused on obtaining feature combinations towards low-error 
prediction of time-series BHFP in two wells in the Volve field. Three machine learning (ML) models (support vector 
regression (SVR), a distance-based model; random forest (RF), a tree-based ensemble model and Long Short-Term 
Memory (LSTM), a type of recurrent neural network) are used for BHFP prediction in two wells of the Volve field. The 
data for each well was split such that the first 70% is used in training the model, the next 15% as validation data for 
selecting the optimal hyperparameters and the last 15% for testing the models. The train and validation sets were used 
to train the models before making predictions on the test sets. While the SVR and RF models reasonably predicted the 
BHFP in both wells with a maximum Mean Absolute Percentage Error (MAPE) of 5.0% and 4.3% respectively, the LSTM 
model performed best across both wells with the MAPE less than 2.9% in both wells. ML model performance was 
superior for the well with the data distributed more uniformly. The three feature combinations with superior ML model 
performance for BHFP prediction all have five features in common namely: bottomhole temperature, oil flow rate, gas 
flow rate, choke size, onstream hours. The workflow in this work can be adopted for fieldwide BHFP prediction. 

Keywords: Bottomhole flowing pressure; Well performance; Support vector regression; Random Forest; Long Short-
Term Memory; Volve Field 

1. Introduction

Large amounts of data are generated on the oil field daily, to which various machine learning techniques have been 
applied. Ensemble learning algorithms such as Random Forest (RF), Gradient Boosting (GB), Adaptive Boosting, and K-
Neighbors were used to predict the time-lapse oil saturation profile at four well locations using data from the Volve field 
with synthetically generated time-lapse oil saturation data from a history-matched reservoir simulation model. It was 
found that the RF model performs better than the other models with the K-Neighbors model being the worst performing 
model [1]. The application of RF was proposed for testing the performance of two classification methods in detecting 
anomalies due to flow assurance, integrity, and mechanical problems to mitigate against loss of oil and gas production 
based on data obtained from bottomhole pressure and temperature sensors in wells of an offshore field [2]. Non-linear 
Support Vector Regression (SVR) was shown to be superior to segmented linear and polynomial regression in 
describing the time-series well production data and computing the deviation of production test parameters with time. 
This was critical to removing outliers from a database. The deviations obtained were then stochastically modelled to 
assess the uncertainty in production forecasts in a Brazilian oilfield [3]. It has been suggested that predictions obtained 
from machine learning models and deep learning models can be used to infer reservoir behavior as a substitute to 
flowing or shut-in well tests [4].  
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One parameter critical to the history matching, production forecasting or even well and reservoir management is 
bottomhole flowing pressure (BHFP). Its accurate prediction impacts on production optimization: attaining the balance 
between high technical hydrocarbon recovery while minimizing the unit cost per barrel [5]. Traditionally, the 
estimation of BHFP is done using published empirical correlations [6-11] and mechanistic models [12-17] which are 
applied taking into cognizance the flow regimes and wellbore inclination.  

Machine learning models, and deep learning models, have shown potential in estimating BHFP over the last few years. 
Tariq et al. [5] used a feed-forward artificial neutral network (ANN) model with three layers to relate BHFP to ten 
variables such as production rates for the three fluid phases, wellhead pressure, wellhead temperature, bottom-hole 
temperature, tubing diameter, depth, and oil gravity. Published bottom-hole survey data taken in vertical wells 
producing without the aid of artificial lift was sourced from Govier and Forgarasi [18] and Asheim [19]. The weights 
and biases of the model were tuned and updated using a particle swarm optimization method. The developed model 
outperformed established empirical and mechanistic models for estimating BHFP thus providing a cost-effective 
alternative to running bottom-hole surveys. Akinsete and Adesiji [20] built an ANN model for predicting BHFP in the 
Volve field. Data was obtained from 7 wells with 70% used for training and 30% used to test the ANN model. The 
features used for training the ANN model are like those employed in Tariq et al. [5] differing in the exclusion of gas 
volume, water volume and oil gravity. Additional features used are annulus and differential pressure. The ANN model 
performance was compared to other machine learning models – SVR, RF and Decision Trees (DT). The ANN model had 
the least mean absolute error (MAE) of 0.02657 while SVR was the worst performing model with MAE of 7.22810. The 
MAE for RF and DT was similar yielding 0.52584 and 0.60121 respectively. Details of how ensemble models were 
trained was not discussed. Four machine learning algorithms (RF, GB, SVR and ANN) were compared by Kanin et al. [21] 
in predicting the pressure gradient along a pipe segment in inclined wells with two-phase gas-liquid flow. A set of 
dimensionless variables were used as inputs to the regression models to ensure similarity for different fluids and reduce 
the number of inputs. In addition to BHFP estimation, the liquid holdup and flow pattern were predicted as regression 
and classification tasks respectively. This necessitated building three models per algorithm. Of the four algorithms GB 
performed best with high accuracy while the worst performing model was ANN. The performance of the machine 
learning models was comparable to the empirical models tested. Baryshnikov et al. [22] improved the predictive 
capacity of an ANN model for BHFP estimation proposed by Kanin et al. [21] by training it on both synthetic data 
generated using mechanistic model and laboratory multiphase flow data and then tuning same to actual field data. The 
wellbore was divided into segments in line with the well survey data and the pressure drop along the wellbore 
calculated via an iterative procedure which computes fluid properties using correlations assuming steady-state. The 
ANN model performed slightly better than the empirical models to which it was compared. The model was then applied 
to time-dependent datasets obtained from both surface and bottom-hole pressure gauges during a flowback period. The 
train to test data split was 60% to 40% and 70% to 30% for well#1 and well#2 respectively. The accuracy of the model 
was limited by the approximation of quasi-steady-state behavior to a transient flow.  

BHFP prediction has been approached as a time-series forecasting problem in some studies. Ignatov et al. [23] proposed 
tree-based models (RF and GB) for BHFP prediction, in multiphase wellbore flow which captured transient behavior. 
The training and testing datasets were generated by a flow simulator capable of handling transient multiphase flow. 
Time-dependent BHFP is considered a function of wellhead pressure, surface production rates and well geometry 
(trajectory and diameter). Rates were generated as exponential functions of time. The dataset was split for training and 
testing by 80% to 20% respectively. The normalized root mean squared error for the worst scenarios was GB, ANN and 
RF was 15.3%, 17.0% and 17.3%. Li et al. [4] explored the use of Recurrent Neural Network (RNN) models to analyze 
well behavior and predict BHFP in the Volve field as a time series; Simple RNN, Gated Recurrent Unit (GRU), LSTM and 
Long- and Short-term Time-series Network (LSTNet) which is an innovative combination of RNN and Convolutional 
Neural Network. The production data from well NO 15/9-F-1 C from April 2014 to April 2016 was used for both training 
and testing the models. The data was split into training, testing and validation sets in the ratio 70:15:15. Relative 
squared error (RSE) was used as the evaluation metric for the models, with relative absolute error (RAE) used as a 
reference. Single parameters were used to train a single layer GRU model to predict the BHFP, the best parameter (i.e., 
the one that gave the least RSE) was found to be temperature, followed by the choke opening percentage and then water 
production. Hybrid features formed from different combinations of rate and time difference were tested, their 
performance showed that the model was able to extract the relationship between flow rate and pressure more 
effectively. The combination of features with the least errors includes the following: bottomhole temperature, time 
interval, production rate for each phase and the rates over each time interval. The GRU and LSTM models were found 
to be more accurate than the simple RNN model with RSE for the test dataset yielding 0.1394, 0.2008 and 0.5739 
respectively. The LSTNet showed significant improvement in performance with the least RSE of 0.0884. Abdrakhmanov 
et al. [24] used transformer-based neural networks for the forecasting of bottomhole pressure in the Volve field. 
Learning from training the transformer-based model to predict BHFP based production parameters (daily production 
rates for oil, gas, and water, bottomhole temperature, and percentage choke opening) from one well was transferred to 
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the training procedure of a second well by tuning of the weights of the initial model to obtain the bottomhole pressure 
predictions for the second well. Generalization of the transformer-based model to handle well interference in multiple 
well flow test was carried out which resulted in more accurate downhole pressure prediction. While the performance 
of the transformer model was comparable to the RNN, LSTM and GRU models on the initial dataset, it outperformed the 
other models on the second well with RSE of 0.12 as compared to 0.15, 0.46 and 0.62 for LSTM, GRU and RNN 
respectively.  

In this study, optimal feature selection for the prediction of time dependent BHFP is addressed. The performance of 
machine learning algorithms (RF and SVR) is compared to a sequential deep learning model – LSTM. Recommendations 
to BHFP prediction as a time series are provided.  

2. Methodology 

2.1. Description of Volve Field Datasets 

The Volve field was developed with pressure support provided by two water injection wells, F-4 and F-5, both drilled 
in 2007. Production started with two production wells, F-12 and F-14, both drilled in 2008. The field was expected to 
produce for 5 years. Wells 15/9-F-11, 15/9-F-15 D and 15/9-F-1 C were drilled after 2013. The daily production data 
from the Volve field used for this work, specifically for wells 15/9-F-15 D and 15/9-F-1 C, are shown in Figure 1 and 
Figure 2 respectively. Cyclical shut-in and flow periods can be seen in both figures which could be because of 
maintenance operations on the platform [25].  

 

Figure 1 Average bottomhole pressure in Well 15/9-F-15 D 

 

Figure 2 Average bottomhole pressure in Well 15/9-F-1 C 

The selected features, which are all numerical, from the data for the selected wells as extracted from the full dataset are 
summarized in Table 1. There were no missing values in well 15/9-F-15 D. However, it was observed that the average 
bottomhole pressure data was found to be abnormally high from 2016-07-10 (after 900 days). These data points were 
considered outliers and were consequently removed. Data from the Well 15/9-F-1 C is well distributed with no outliers, 
and slightly skewed to the left. Missing values were removed from well 15/9-F-1 C data. The correlation of the features 
with the bottomhole pressure for both wells is shown in Table 2. Three models are employed in this work - Support 
Vector Machine (SVM), Randon Forrest and Long Short-Term Memory (LSTM) - to predict the bottomhole pressure for 
wells in the Volve field.  
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Table 1 Features definition, units, and data types 

Feature Definition Unit 

ONS_HR Number of hours of production Hours 

AVG_BHP Bottomhole pressure Bar 

AVG_BHT Bottomhole temperature o C 

*ΔP_TUB Differential tubing pressure Bar 

%CHK_OP Percentage of choke open % 

AVG_WHP Wellhead pressure Bar 

AVG_WHT Wellhead temperature o C 

CHK_SZ Choke size mm 

OIL_VOL Average oil flow rate Sm3/day 

GAS_VOL Average gas flow rate Sm3/day 

WAT_VOL Average water flow rate Sm3/day 

* Differential tubing pressure, is a derived term (ΔP_TUB = AVG_BHP – AVG_WHP) 

Table 2 Correlation of features with bottomhole pressure 

Feature 15/9-F-15 D 15/9-F-1 C 

AVG_BHT -0.927 -0.795 

ONS_HR -0.883 -0.694 

OIL_VOL -0.682 -0.599 

GAS_VOL -0.680 -0.611 

AVG_WHT -0.615 -0.675 

%CHK_OP -0.537 -0.675 

WAT_VOL -0.088 -0.324 

ΔP_TUB 0.594 0.471 

AVG_WHP 0.703 0.355 

CHK_SZ 0.818 0.566 

3. Machine Learning Models 

3.1. Support Vector Machine  

Support Vector Machine, as applied to regression, works by trying to minimize the error margin, ±ϵ, between the 
predicted value and the actual value for each data point. It uses a kernel for nonlinear regression by projecting the 
nonlinear data to a space where it can be represented linearly [26]. The kernels include “linear”, “sigmoid”, “radial basis 
function”, and “polynomial”. For well 15/9-F-15 D, the data was normalized such that each feature is between 0 and 1 
(min-max normalization), while for well 15/9-F-1 C, the data was standardized such that data has a mean of 0 and 
standard deviation of 1.  

3.2. Random Forest  

Random Forest is an ensemble model; it is made up of decision trees. A decision tree is a structure that is built up by a 
rule based hierarchical structure made up of nodes or leaves. A condition is imposed on a feature or features at each 
node. The prediction is obtained by averaging the values in the terminal nodes. A RF model works by training multiple 
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decision trees in parallel and uses a bagging technique to obtain a robust model. For both wells min-max normalization 
was employed on each feature. 

3.3. Long Short-Term Memory  

Long Short-Term Memory (LSTM) is a sophisticated type of RNN, a type of deep neural network designed for use with 
sequential data. LSTM models are used to overcome problems associated with simple RNNs, such as the vanishing 
gradient problem. The LSTM model retains relevant information using three gates: the input gate which evaluates the 
importance of the input data and carries it to the next cell, the forget gate which is used to determine whether 
information should be discarded or retained and the output gate that controls the content for the next hidden state. A 
network with a single LSTM layer and a linear output layer was used in training. The LSTM layer had 512 units and a 
sequence length of 5 was used, i.e., the previous 5 values of each of the three features are used in predicting the next 
value of the target. For both well 15/9-F-15 D and well 15/9-F-1 C, the data was normalized using the robust scaling 
method. The target value was also scaled, and the result inverted to obtain the unscaled bottomhole pressure.  

3.4. Optimization of model hyperparameters  

The dataset for each well was split such that the first 70% is used in training, the next 15% as validation data for 
selecting the optimal hyperparameters and the last 15% for testing the models, for wells 15/9-F-15 D and 15/9-F-1 C 
respectively. The validation results were obtained by training on the train data and using the resulting model to predict 
the validation set. The test results were obtained by training the model on the train and validation sets before predicting 
the test set. An optimization algorithm [27] is used to select optimal hyperparameters for the SVM and RF models for 
each well. For the LSTM model, Keras tuner [28] was used to select optimal hyperparameters using Adam optimizer 
which combines the advantages of Adaptive Gradient Algorithm and Root Mean Square Propagation with a learning rate 
of 1e-4. The performance of each model in this work has been evaluated using six metrics: Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Coefficient of Determination (R2 Score), 
Relative Squared Error (RSE) and Relative Absolute Error (RAE). 

4. Results and discussion 

Table 3 Performance (RMSE) of single features in predicting BHFP 

  15/9-F-15 D 15/9-F-1 C Average 

Feature/Method SVR RF LSTM SVR RF LSTM SVR RF LSTM 

AVG_BHT 12.126 11.614 11.704 19.853 16.131 12.160 15.990 13.872 11.932 

OIL_VOL 12.603 12.923 12.557 15.644 19.649 11.314 14.123 16.286 11.936 

GAS_VOL 12.694 13.753 12.307 15.677 20.055 11.663 14.185 16.904 11.985 

%CHK_OP 12.758 15.688 12.621 23.995 25.725 21.167 18.377 20.706 16.894 

ONS_HR 13.308 13.032 12.323 24.190 21.462 15.177 18.749 17.247 13.750 

CHK_SZ 15.438 16.328 14.677 24.949 26.487 20.729 20.193 21.407 17.703 

AVG_WHT 16.782 16.106 14.401 19.868 25.029 15.248 18.325 20.568 14.824 

AVG_WHP 19.966 43.827 16.692 22.157 25.220 13.337 21.061 34.524 15.015 

ΔP_TUB 22.615 36.025 24.854 28.787 25.356 25.504 25.701 30.690 25.179 

WAT_VOL 27.022 18.588 20.237 20.704 22.673 19.257 23.863 20.631 19.747 

 

The performance of the three machine learning models for BHFP prediction based on each single feature independently 
was tested, with the RMSE shown in Table 3 for both wells. Though the models perform differently, the three features 
which best estimate BHFP across both wells are bottomhole temperature, oil production rate, and gas production rate. 
However, the wellhead pressure, which is a key parameter in bottomhole pressure prediction in both empirical and 
mechanistic models, performs poorly in the time-series FBHP prediction independently. To minimize the error in 
prediction, different combinations of features were tested with the three models for BFHP prediction. These feature 
combinations include at least one of the prior identified parameters: bottomhole temperature, oil production rate, and 
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gas production rate. Table 4 shows the results of the feature combinations in predicting the test set with RMSE as the 
performance metric.  

Table 4 RMSE for models based on different feature combinations on prediction of the test set 

 15/9-F-15 D 15/9-F-1 C 

Features SVR RF LSTM SVR RF LSTM 

AVG_BHT, CHK_SZ 10.027 11.677 11.622 16.300 16.162 10.984 

AVG_BHT, OIL_VOL 10.027 10.942 11.480 12.295 14.571 8.767 

AVG_BHT, OIL_VOL, %CHK_OP  10.130 9.706 12.862 9.749 14.026 7.266 

AVG_BHT, OIL_VOL, CHK_SZ 10.066 11.143 11.269 13.687 13.606 7.322 

AVG_BHT, OIL_VOL, WAT_VOL 14.672 9.584 9.367 9.992 13.782 9.516 

AVG_BHT, OIL_VOL, %CHK_OP, AVG_WHP  9.922 9.985 11.965 11.501 12.927 8.492 

AVG_BHT, OIL_VOL, GAS_VOL, %CHK_OP  10.317 9.923 12.751 10.005 11.504 7.108 

AVG_BHT, OIL_VOL, GAS_VOL, CHK_SZ  9.868 11.293 10.474 12.544 14.078 7.352 

AVG_BHT, OIL_VOL, GAS_VOL, CHK_SZ, 
AVG_WHT 

11.862 10.381 11.129 13.169 13.710 6.925 

AVG_BHT, OIL_VOL, GAS_VOL, CHK_SZ, 
ONS_HR 

9.854 11.259 8.919 9.451 12.917 6.471 

AVG_BHT, OIL_VOL, GAS_VOL, CHK_SZ, 
AVG_WHP, ONS_HR  

11.906 9.870 8.263 9.827 12.171 6.567 

AVG_BHT, OIL_VOL, GAS_VOL, CHK_SZ, 
AVG_WHP, AVG_WHT, ONS_HR  

11.663 9.919 7.855 10.188 12.568 6.679 

CHK_SZ, ΔP_TUB, AVG_WHT 6.620 8.423 10.724 5.132 7.965 4.961 

GAS_VOL, AVG_WHT, ONS_HR 14.828 11.035 11.548 18.023 21.602 13.607 

OIL_VOL, CHK_SZ 13.283 13.465 10.410 13.735 19.297 12.859 

OIL_VOL, AVG_WHP 14.727 11.051 14.783 16.192 20.038 14.401 

OIL_VOL, AVG_WHP, AVG_WHT 17.676 17.506 15.159 16.030 16.594 14.096 

OIL_VOL, AVG_WHP, AVG_WHT, CHK_SZ, 
WAT_VOL 

10.440 11.118 8.695 11.543 15.254 12.911 

OIL_VOL, AVG_WHP, AVG_WHT, %CHK_OP, 
WAT_VOL 

10.824 10.454 9.394 15.587 17.150 14.135 

 

Models using feature combinations which exclude bottomhole temperature tend perform poorly in BFHP prediction as 
shown in Table 4. An exception is seen with the combination of three features: choke size, tubing differential pressure 
and wellhead temperature. This feature combination resulted in superior performance for both the SVR and RF models 
over other feature combinations for both wells 15/9-F-15 D and 15/9-F-1 C. The SVR model had the best performance 
in predicting FBHP for the test data for well 15/9-F-15 D with highest coefficient of determination of 0.914 and the least 
error metrics as regards MSE and RSE with 5.895 and 0.00864 respectively. With respect to RMSE, the SVR model error 
was 21% and 38% lower than the RF and the LSTM error respectively; the RAE associated with the SVR model of 0.3416 
was also the least compared to 0.3984 and 0.4916 associated with the RF and LSTM models respectively. The LSTM had 
the best performance on the well 15/9-F-1 C test data with RMSE of 4.961 as compared to 5.132 and 7.965 for SVR and 
RF respectively and MAE of 3.842 to 4.344 and 6.723 for SVR and RF respectively. Overall, the feature combination of 
choke size, tubing differential pressure and wellhead temperature was the most concise and accurate in predicting 
BFHP. It also reflects three elements in tandem with bottomhole pressure estimation – choke size for rate, pressure 
drop along the tubing and wellhead temperature. However, there is a drawback of data leakage in this feature 



International Journal of Frontiers in Engineering and Technology Research, 2022, 02(02), 020–029 

26 

combination as the tubing differential pressure is the difference between the predicted BFHP and wellhead pressure. 
Thus, alternative feature combinations which include bottomhole temperature must be considered. Of these feature 
combinations three combinations stand out with low RMSE values (as highlighted in Table 4). The performance of the 
SVR, RF and LSTM models based on these highlighted feature combinations (C#1, C#2, and C#3) is shown in Table 5 
with their evaluation metrics. 

Table 5 Results for the three best performing feature combinations with bottomhole temperature 

 15/9-F-15 D 15/9-F-1 C 

 C#1: AVG_BHT, OIL_VOL, GAS_VOL, CHK_SZ, ONS_HR 

 SVR RF LSTM SVR RF LSTM 

RMSE 9.854 11.259 8.919 9.451 12.917 6.471 

MAE 8.215 8.209 6.458 7.226 10.717 5.178 

MAPE  3.780 3.750 2.910 2.880 4.280 2.010 

R2 0.809 0.750 0.843 0.833 0.688 0.922 

RSE 0.191 0.250 0.157 0.167 0.313 0.079 

RAE 0.476 0.486 0.374 0.361 0.536 0.259 

C#2: AVG_BHT, OIL_VOL, GAS_VOL, CHK_SZ, ONS_HR, AVG_WHP 

 SVR RF LSTM SVR RF LSTM 

RMSE 11.906 9.871 8.263 9.827 12.171 6.567 

MAE 10.722 6.847 5.827 8.020 9.794 5.197 

MAPE  4.987 3.086 2.595 3.183 3.814 1.985 

R2 0.721 0.808 0.865 0.819 0.722 0.919 

RSE 0.279 0.192 0.135 0.181 0.278 0.088 

RAE 0.621 0.397 0.338 0.401 0.490 0.260 

C#3: AVG_BHT, OIL_VOL, GAS_VOL, CHK_SZ, ONS_HR, AVG_WHP, AVG_WHT 

 SVR RF LSTM SVR RF LSTM 

RMSE 11.663 9.919 7.855 10.188 12.568 6.679 

MAE 10.216 7.100 5.227 7.754 9.925 5.246 

MAPE  4.726 3.228 2.329 3.016 3.871 2.003 

R2 0.732 0.806 0.878 0.806 0.704 0.916 

RSE 0.268 0.194 0.122 0.194 0.296 0.084 

RAE 0.592 0.411 0.303 0.388 0.496 0.262 

 

The SVR model performs best across both wells for the combination with five features (C#1) with RSE of 0.191 and 
0.167 for wells 15/9-F-15 D and 15/9-F-1 C respectively as shown in Table 5 as compared to the combinations with six-
features (C#2) and seven-features (C#3). The relative square error for the SVR model is similar for the six and seven 
feature combinations. The RSE obtained with the six-feature combination (C#2) was 0.279 and 0.181 for wells 15/9-F-
15 D and 15/9-F-1 C respectively while 0.268 and 0.194 was obtained when seven features (C#3) were employed for 
wells 15/9-F-15 D and 15/9-F-1 C respectively. The RF model generated the least error across both wells for the six-
feature combination with the RSE of 0.192 and 0.278 for wells 15/9-F-15 D and 15/9-F-1 C respectively. The RSE is 
quite similar for the seven-feature combination with 0.194 and 0.296 for wells 15/9-F-15 D and 15/9-F-1 C respectively. 
The relative square error was highest when five features were used with 0.250 and 0.313 for wells 15/9-F-15 D and 
15/9-F-1 C respectively.  
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It can be seen from Table 5 that the LSTM model best predicts the BHFP in both wells irrespective of the feature 
combination and regardless of the evaluation metric used with RAE ranging from 0.303 to 0.374 and 0.259 to 0.262 for 
wells 15/9-F-15 D and 15/9-F-1 C respectively. While the performance of the LSTM improves with increasing number 
of features for well 15/9-F-15 D the converse is the case for well 15/9-F-1 C. Judging based on performance, the seven-
feature combination i.e., C#3 (bottomhole temperature, oil flow rate, gas flow rate, choke size, onstream hours, wellhead 
pressure and wellhead temperature) has been selected for the prediction of BHFP. This is because while the RAE 
increases marginally from 0.259 to 0.262 for well 15/9-F-1 C while it declines from 0.374 to 0.303 for well 15/9-F-15 D 
which results in 1.2% and 19.0% RAE decline in with the inclusion of wellhead pressure and temperature. 

 

Figure 3 LSTM model performance- well 15/9-F-15 D. 

 

Figure 4 LSTM model performance- well 15/9-F-1 C 

The performance metrics for the LSTM model are shown in Table 6. The actual to predicted time-series BHFP data is 
shown in Figure 3 and Figure 4 for wells 15/9-F-15 D and 15/9-F-1 C respectively. A comparison between the train 
results and the test results for the LSTM model for the seven-feature combination (Table 6) shows that the MAPE 
increases by 51% from 1.149% to 2.329% for the training data and test data based on well 15/9-F-15 D. In contrast, the 
MAPE declines 14% from 2.319% to 2.003% for well 15/9-F-1 C indicating the LSTM model performed better in 
predicting BHFP as compared to well 15/9-F-15 D. The three models (SVR, RF and LSTM) generally performed better 
on well 15/9-F-1 C than on well 15/9-F-15 D. This is attributed to the difference in pressure distributions for both wells. 
The bottomhole pressure data for well 15/9-F-1 C is more uniformly distributed compared to the well 15D pressure 
data. 

The models were all able to extract meaningful information from the data. It is worth noting that similar accuracy in 
BHFP prediction in this study has been achieved with five parameters, six parameters and seven parameters, as 
compared to nine parameters in an earlier study [4]. A comparison of the error generated by models used in predicting 
BHFP in this work shows that the LSTM model in this study performed marginally better in BHFP prediction for well 
15/9-F-1 C with RSE and RAE of 0.08 and 0.26 respectively as compared to RSE and RAE of 0.084 and 0.267 respectively 
obtained using the LSTNet – an innovative combination of Recurrent Neural Networks with Convolutional Neural 
Networks [4]. The LSTM model implemented in this work is also superior in performance for both wells to the 
Transformer model in Abdrakhmanov et al. [24] with a 22% and 28% decrease in RMSE and MAPE respectively. The 
application of machine learning methods to time-series bottom hole flowing pressure data over two different wells give 
further credence to the consistency of the results obtained. 
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Table 6 Model Performance metrics for train and test data using C#3 for both wells 

 15/9-F-15 D 15/9-F-1 C 

 SVR RF LSTM SVR RF LSTM 

 Train Test Train Test Train Test Train Test Train Test Train Test 

RMSE 9.18 11.7 1.69 9.92 6.35 7.86 7.39 10.2 3.61 12.6 7.26 6.68 

MAE 7.57 10.2 0.77 7.10 2.68 5.23 4.46 7.75 2.32 9,93 5.64 5.25 

MAPE 3.50 4.73 0.34 3.23 1.15 2.33 1.82 3.02 0.94 3.87 2.32 2.00 

R2 0.89 0.73 0.99 0.81 0.95 0.88 0.92 0.81 0.98 0.70 0.94 0.92 

RSE 0.11 0.27 0.01 0.19 0.05 0.12 0.08 0.19 0.02 0.30 0.06 0.08 

RAE 0.35 0.59 0.04 0.41 0.13 0.30 0.18 0.39 0.09 0.50 0.23 0.26 

 

5. Conclusion 

Three machine learning models (Support Vector Regression, Random Forest, and Long Short-Term Memory) have been 
employed for predicting flowing bottomhole pressure as time series data for two wells in the Volve field. Three different 
feature combinations have been identified with similar performance metrics for the three machine learning models. The 
common features to the three combinations are bottomhole temperature, oil flow rate, gas flow rate, choke size, 
onstream hours, wellhead pressure and wellhead temperature. Of the three models, the LSTM model is the best 
performing model across both well. The SVR model appears to produce favorable performance metrics for fewer 
number of features. This contrasts with the LSTM model which posts improved performance metrics with increasing 
number of features. The RF model tends to overfit training data thus resulting in poor performance on the test data as 
compared to LSTM models. Consistency in BHFP estimates obtained via machine learning models in two wells in the 
Volve field have been demonstrated. The performance of each model however depends on effective tuning of the model 
hyperparameters. 

Compliance with ethical standards  

Acknowledgments 

We are profoundly grateful to Dr. (Mrs.) A.O. Ogunbayo and Mr. Joseph Olaide for their support towards the completion 
of this work. 

Disclosure of conflict of interest 

The authors state that there is no conflict of interest in this work. No funding grant was used in carrying out this work.  

References 

[1] Wang B, Sharma J, Chen J, Persaud P. Ensemble Machine Learning Assisted Reservoir Characterization using Field 
Production Data-An Offshore Field Case Study. Energies. 2021; 14(4): 1052.  

[2] De Salvo Castro AO, De Jesus Rocha Santos M, Leta FR, Lima CBC, Lima GBA. Unsupervised Methods to Classify 
Real Data from Offshore Wells. American Journal of Operations Research. 2021; 11: 227-41.  

[3] Monteiro DD, Duque MM, Chaves GS, Ferreira Filho VM, Baioco JS. Using data analytics to quantify the impact of 
production test uncertainty on oil flow rate forecast. IFP Energies Nouvelles. 2020; 75(7): 1-15.  

[4] Li Y, Sun R, Horne R. Deep Learning for Well Data History Analysis. In: SPE Annual Technical Conference and 
Exhibition, Calgary, Alberta, Canada. 2019; 1-16.  

[5] Tariq Z, Mahmoud M, Abdulraheem A. Real‑time prognosis of flowing bottom‑hole pressure in a vertical well for 
a multiphase flow using computational intelligence techniques. J Petrol Explor Prod Technol. 2020; 10: 1411-28.  



International Journal of Frontiers in Engineering and Technology Research, 2022, 02(02), 020–029 

29 

[6] Duns H, Ros NCJ. Vertical flow of gas and liquid mixtures in wells. In: Proceedings of the 6th World Petroleum 
Congress, Frankfurt, Germany. Paper Number: WPC-10132. 1963; 451-65.  

[7] Orkiszewski J. Predicting two-phase pressure drops in vertical pipe. J Pet Technol. 1967; 19(06): 829-38.  

[8] Aziz K, Govier GW. Pressure drop in wells producing oil and gas. J Can Pet Technol. 1972; 11(03): 7-9. 

[9] Beggs DH, Brill JP. A study of two-phase flow in inclined pipes. J Pet Technol. 1973; 25: 607-17.  

[10] Chierici GL, Ciucci GM, Sclocchi G. Two-Phase Vertical Flow in Oil Wells – Prediction of Pressure Drop. J Pet 
Technol. 1974; 26(08): 927-38.  

[11] Mukherjee H, Brill JP. Pressure Drop Correlations for Inclined Two-Phase Flow. J Energy Resour. Technol. 1985; 
107(4): 549-54.  

[12] Ansari AM, Sylvester ND, Sarica C, Shoham O, Brill JP. A comprehensive mechanistic model for upward two-phase 
flow in wellbores. SPE Prod & Fac. 1985; 9(02): 143-51.  

[13] Hasan AR, Kabir CS. Fluid Flow and Heat Transfer in Wellbores. 2nd ed. Richardson: Society of Petroleum 
Engineers; 2018. 

[14] Guo B, Ghalambor A. Natural Gas Engineering Handbook. 2nd ed. Houston: Gulf Publishing Company; 2012. 

[15] Bendiksen KH, Maines D, Moe R, Nuland S. The Dynamic Two-Fluid Model OLGA: Theory and Application. SPE 
Prod Eng. 1991; 6(02): 171-80.  

[16] Gomez LE, Shoham O, Schmidt Z, Chokshi RN, Northug T. Unified Mechanistic Model for Steady-State Two-Phase 
Flow: Horizontal to Vertical Upward Flow. SPE Journal. 2000; 5(3): 339-50.  

[17] Zhang H-Q, Wang Q, Sarica C, Brill JP. A unified mechanistic model for slug liquid holdup and transition between 
slug and dispersed bubble flows. International Journal of Multiphase Flow. 2003; 29(1): 97-107.  

[18] Govier GW, Forgarasi M. Pressure drop in wells producing gas and condensate. J Can Pet Technol. 1975; 14(04): 
1-3.  

[19] Asheim H. MONA, an accurate two-phase well flow model based on phase slippage. SPE Prod Eng. 1986; 1(03): 
221-30.  

[20] Akinsete O, Adesiji BA. Bottom-Hole Pressure Estimation from Wellhead Data Using Artificial Neural Network. 
In: SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria. 2019; 1-15. 

[21] Kanin EA, Osiptsov AA, Vainshtein AL, Burnaev EV. A predictive model for steady-state multiphase pipe flow: 
Machine learning on lab data. Journal of Petroleum Science and Engineering. 2019; 180: 727-46.  

[22] Baryshnikov ES, Kanin EA, Osiptsov AA, Vainshtein AL, Burnaev EV, Paderin GV, Prutsakov AS, Ternovenko SO. 
Adaptation of Steady-State Well Flow Model on Field Data for Calculating the Flowing Bottomhole Pressure. In: 
Proceedings of the SPE Russian Petroleum Technology Conference. 2020; 1-17.  

[23] Ignatov DI, Sinkov K, Spesivtsev P, Vrabie I, Zyuzin V. Tree-Based Ensembles for Predicting the Bottomhole 
Pressure of Oil and Gas Well Flows, In: van der Aalst WMP et al. (eds.). Analysis of Images, Social Networks and 
Texts. 1st ed. Springer Nature Switzerland. 2018; 221-33.  

[24] Abdrakhmanov IR, Kanin EA, Boronin SA, Burnaev EV, Osiptsov AA. Development of Deep Transformer-Based 
Models for Long-Term Prediction of Transient Production of Oil Wells. In: Proceedings of the SPE Russian 
Petroleum Technology Conference. 2021; 1-15.  

[25] Production performance of the Volve Oilfield [Internet]. WordPress. ©. 2021 [cited: 2022 Mar 28]. Available 
from: https://discovervolve.com/2021/04/14/production-performance-of-the-volve-oilfield/. 

[26] Pandey YN, Rastogi A, Kainkaryam S, Bhattacharya S, Saputelli L. Machine Learning in the Oil and Gas Industry : 
Including Geosciences, Reservoir Engineering, and Production Engineering with Python, Apress Standard. 2020.  

[27] Bergstra J, Yamins D, Cox D. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of 
Dimensions for Vision Architectures. In: Proceedings of the 30th International Conference on Machine Learning. 
PMLR. 2013; 28(1): 115-123.  

[28] Hyperparameter tuning for humans [Internet]. GitHub, Inc. ©. 2022 [cited: 2022 Mar 30]. Available from: 
https://github.com/keras-team/keras-tuner. 

https://discovervolve.com/2021/04/14/production-performance-of-the-volve-oilfield/
https://github.com/keras-team/keras-tuner

